1
|
Dorken-Gallastegi A, Lee Y, Li G, Li H, Naar L, Li X, Ye T, Van Cott E, Rosovsky R, Gregory D, Tompkins R, Karniadakis G, Kaafarani HMA, Velmahos GC, Lee J, Frydman GH. Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19. iScience 2023; 26:107202. [PMID: 37485375 PMCID: PMC10290732 DOI: 10.1016/j.isci.2023.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
We sought to study the role of circulating cellular clusters (CCC) -such as circulating leukocyte clusters (CLCs), platelet-leukocyte aggregates (PLA), and platelet-erythrocyte aggregates (PEA)- in the immunothrombotic state induced by COVID-19. Forty-six blood samples from 37 COVID-19 patients and 12 samples from healthy controls were analyzed with imaging flow cytometry. Patients with COVID-19 had significantly higher levels of PEAs (p value<0.001) and PLAs (p value = 0.015) compared to healthy controls. Among COVID-19 patients, CLCs were correlated with thrombotic complications (p value = 0.016), vasopressor need (p value = 0.033), acute kidney injury (p value = 0.027), and pneumonia (p value = 0.036), whereas PEAs were associated with positive bacterial cultures (p value = 0.033). In predictive in silico simulations, CLCs were more likely to result in microcirculatory obstruction at low flow velocities (≤1 mm/s) and at higher branching angles. Further studies on the cellular component of hyperinflammatory prothrombotic states may lead to the identification of novel biomarkers and drug targets for inflammation-related thrombosis.
Collapse
Affiliation(s)
- Ander Dorken-Gallastegi
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yao Lee
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| | - Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - He Li
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Leon Naar
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Ting Ye
- Information and Computational Mathematics, Ji Lin University, Changchun, China
| | - Elizabeth Van Cott
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Rosovsky
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Gregory
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ronald Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Haytham MA. Kaafarani
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George C. Velmahos
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jarone Lee
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Galit H. Frydman
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| |
Collapse
|
2
|
Butt A, Erkan D, Lee AI. COVID-19 and antiphospholipid antibodies. Best Pract Res Clin Haematol 2022; 35:101402. [PMID: 36494152 PMCID: PMC9568270 DOI: 10.1016/j.beha.2022.101402] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Antiphospholipid syndrome and the coagulopathy of COVID-19 share many pathophysiologic features, including endotheliopathy, hypercoagulability, and activation of platelets, complement pathways, and neutrophil extracellular traps, all acting in concert via a model of immunothrombosis. Antiphospholipid antibody production in COVID-19 is common, with 50% of COVID-19 patients being positive for lupus anticoagulant in some studies, and with non-Sapporo criteria antiphospholipid antibodies being prevalent as well. The biological significance of antiphospholipid antibodies in COVID-19 is uncertain, as such antibodies are usually transient, and studies examining clinical outcomes in COVID-19 patients with and without antiphospholipid antibodies have yielded conflicting results. In this review, we explore the biology of antiphospholipid antibodies in COVID-19 and other infections and discuss mechanisms of thrombogenesis in antiphospholipid syndrome and parallels with COVID-19 coagulopathy. In addition, we review the existing literature on safety of COVID-19 vaccination in patients with antiphospholipid antibodies and antiphospholipid syndrome.
Collapse
Affiliation(s)
- Ayesha Butt
- Section of Hematology, Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Hospital for Special Surgery and Weill Cornell Medicine, 535 E. 70th St., 6th floor, New York, NY, 10021, USA.
| | - Alfred Ian Lee
- Section of Hematology, Department of Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|