1
|
Dai Y, Luo L, Wei Z, Cheng P, Luo J, Li J. The clinical efficacy of a daratumumab-based regimen in relapsed/refractory acute leukemia: a single-center experience. Ann Hematol 2024; 103:4057-4063. [PMID: 39046511 PMCID: PMC11512853 DOI: 10.1007/s00277-024-05892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Relapsed/refractory acute leukemia (R/R-AL) is associated with a low remission rate, short survival rate, and poor prognosis. Treating R/R-AL remains challenging as there is no standardized effective regimen; hence, there is a need for efficient therapies. CD38 expression has been observed in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Daratumumab is a humanized anti-CD38 monoclonal antibody used to treat multiple myeloma and has been reported to treat R/R-AL safely and effectively. The clinical data of 10 adult patients with R/R-AL who were treated with a daratumumab-based salvage regimen between July 2018 and May 2023 at our center were analyzed retrospectively. Seven AML and three ALL cases were included in the analysis. Seven (70%) patients showed responses to the treatments (complete response [CR], 60%; partial response [PR], 10%). Of the seven responders, three underwent allogenic stem cell transplantation (ASCT), including one who underwent a second ASCT. Among the five patients with R/R AML who had prior exposure to venetoclax, three achieved a therapeutic response (two CR and one PR) when re-treated with venetoclax in combination with daratumumab. The median follow-up time was 6.15 months (0.9-21 months). Overall survival and event-free survival rates at 12 months were 68.6% and 40.0%, respectively. The main adverse events included grade 3 febrile neutropenia (20%) and grade 3 hematological toxicities (60%). The daratumumab-based salvage regimen offers patients with R/R-AL the opportunity of remission with acceptable tolerability, creating the possibility of bridging ASCT.
Collapse
Affiliation(s)
- Yi Dai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lin Luo
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhenbin Wei
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Peng Cheng
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jun Luo
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Huang X, Li Y, Zhang J, Yan L, Zhao H, Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, Karol SE, Inaba H, Mullighan C, Litzow M, Zhu X, Zhang Y, Stock W, Jain N, Jabbour E, Kornblau SM, Konopleva M, Pui CH, Paietta E, Evans W, Yu J, Yang JJ. Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia. Cancer Cell 2024; 42:552-567.e6. [PMID: 38593781 PMCID: PMC11008188 DOI: 10.1016/j.ccell.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.
Collapse
Affiliation(s)
- Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230601, China
| | - Yizhen Li
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, China
| | - Jingliao Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huanbin Zhao
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Satoshi Yoshimura
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenjian Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaofan Zhu
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingchi Zhang
- Department of Pediatrics Blood Diseases Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Wendy Stock
- Department of Medicine Section of Hematology-Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Nitin Jain
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elias Jabbour
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Paietta
- Cancer Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - William Evans
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Jun J Yang
- Division of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|