1
|
Colleran A, Lima C, Xu Y, Millichope A, Murray S, Goodacre R. Using surface-enhanced Raman scattering for simultaneous multiplex detection and quantification of thiols associated to axillary malodour. Analyst 2024; 149:3989-4001. [PMID: 38948950 PMCID: PMC11262063 DOI: 10.1039/d4an00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Axillary malodour is caused by the microbial conversion of human-derived precursors to volatile organic compounds. Thiols strongly contribute to this odour but are hard to detect as they are present at low concentrations. Additionally, thiols are highly volatile and small making sampling and quantification difficult, including by gas chromatography-mass spectrometry. In this study, surface-enhanced Raman scattering (SERS), combined with chemometrics, was utilised to simultaneously quantify four malodourous thiols associated with axillary odour, both in individual and multiplex solutions. Univariate and multivariate methods of partial least squares regression (PLS-R) were used to calculate the limit of detection (LoD) and results compared. Both methods yielded comparable LoD values, with LoDs using PLS-R ranging from 0.0227 ppm to 0.0153 ppm for the thiols studied. These thiols were then examined and quantified simultaneously in 120 mixtures using PLS-R. The resultant models showed high linearity (Q2 values between 0.9712 and 0.9827 for both PLS-1 and PLS-2) and low values of root mean squared error of predictions (0.0359 ppm and 0.0459 ppm for PLS-1 and PLS-2, respectively). To test this approach further, these models were challenged with 15 new blind test samples, collected independently from the initial samples. This test demonstrated that SERS combined with PLS-R could be used to predict the unknown concentrations of these thiols in a mixture. These results display the ability of SERS for the simultaneous multiplex detection and quantification of analytes and its potential for future development for detecting gaseous thiols produced from skin and other body sites.
Collapse
Affiliation(s)
- Amy Colleran
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| | - Allen Millichope
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Stephanie Murray
- Unilever Research and Development, Port Sunlight, Bebington, CH63 3JW, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
| |
Collapse
|
2
|
Ferdenzi C, Fournel A, Baldovini N, Poupon D, Ligout D, Thévenet M, Bouet R, Bensafi M. Influence of the human body odor compound HMHA on face perception. Perception 2024; 53:180-196. [PMID: 38216326 DOI: 10.1177/03010066231222473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Body odors convey information about the individuals, but the mechanisms are not fully understood yet. As far as human reproduction is concerned, molecules that are produced in sexually dimorphic amounts could be possible chemosignals. 3-hydroxy-3-methylhexanoic acid (HMHA) is one of them-more typical of men. Here, we investigated the possibility that the perception of gender and attractiveness in human faces could be implicitly influenced by this compound. Clearly feminine, ambiguous and clearly masculine faces were primed with an odor of HMHA, a control odor or air. Based on 100-ms face presentation, 40 raters had to identify the face's gender as quickly as possible and provide attractiveness evaluations. 3-hydroxy-3-methylhexanoic acid tended to be perceived as less pleasant and induced lower sniff duration in women compared with men. As to the effects of HMHA on face perception (vs. control conditions), we found that gender identification and the associated response time were unaffected by HMHA. Attractiveness of the faces, however, increased in presence of HMHA, but not in a sex-specific manner and only for unattractive faces with ambiguous gender. In sum, this study found no evidence in favor of a possible role of this sexually dimorphic compound in intrasexual competition nor in intersexual attraction.
Collapse
|