1
|
Das A. Dyadic contagion in cognitive function: A nationally-representative longitudinal study of older U.S. couples. SOCIAL SCIENCE RESEARCH 2024; 120:103011. [PMID: 38763534 DOI: 10.1016/j.ssresearch.2024.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 05/21/2024]
Abstract
Later-life cognitive function is strongly influenced by one's environment. At this life stage, a partner's behaviors and attributes-including their own cognitive status-are a key environmental determinant. A recent "social allostasis" theory also yields specific predictions on patterns of mutual influence-or "contagion"-in cognitive function. Yet, no population representative studies have examined these coupled dynamics. Using recently developed fixed-effects cross-lagged panel modeling (FE-CLPM) methods and ten-year data from the Health and Retirement Study-nationally-representative of U.S. adults over 50-the current study filled this gap. Results supported dyadic cognitive contagion over the long- but not short-run. Short-term associations suggested intriguing "cognitive cycling" possibilities among both men and women that need further investigation. Overall, results supported a theoretical model of coupled "cognitive careers," and relational inducement of allostatic load. Especially among men, recurrent impulses also cumulatively induced substantial path-dependent cognitive improvements, supporting the added value of repeated over one-time interventions. Theoretical and substantive implications are discussed.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Sociology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Maglione AV, do Nascimento BPP, Ribeiro MO, de Souza TJL, da Silva REC, Sato MA, Penatti CAA, Britto LRG, de Souza JS, Maciel RMB, da Conceição RR, Laureano-Melo R, Giannocco G. Triiodothyronine Treatment reverses Depression-Like Behavior in a triple-transgenic animal model of Alzheimer's Disease. Metab Brain Dis 2022; 37:2735-2750. [PMID: 35951206 DOI: 10.1007/s11011-022-01055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.
Collapse
Affiliation(s)
- Andréa V Maglione
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Bruna P P do Nascimento
- Laboratory of Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Talytha J L de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Renata E C da Silva
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André- Brazil, São Paulo, Santo André, Brazil
| | - Carlos A A Penatti
- Laboratory of Human Physiology, Universidade Nove de Julho, São Paulo, Brazil
| | - Luiz R G Britto
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina S de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rodrigo Rodrigues da Conceição
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| | - Roberto Laureano-Melo
- Laboratory of Physiopharmacoly and Behavior, Universidade de Barra Mansa, Rio de Janeiro, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
3
|
Coomans EM, Tomassen J, Ossenkoppele R, Golla SSV, den Hollander M, Collij LE, Weltings E, van der Landen S, Wolters EE, Windhorst AD, Barkhof F, de Geus EJ, Scheltens P, Visser PJ, van Berckel BNM, den Braber A. Genetically identical twins show comparable tau PET load and spatial distribution. Brain 2022; 145:3571-3581. [PMID: 35022652 PMCID: PMC9586544 DOI: 10.1093/brain/awac004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Tau accumulation starts during the preclinical phase of Alzheimer’s disease and is closely associated with cognitive decline. For preventive purposes, it is important to identify factors associated with tau accumulation and spread. Studying genetically identical twin-pairs may give insight into genetic and environmental contributions to tau pathology, as similarities in identical twin-pairs largely result from genetic factors, while differences in identical twin-pairs can largely be attributed to non-shared, environmental factors. This study aimed to examine similarities and dissimilarities in a cohort of genetically identical older twin-pairs in (i) tau load; and (ii) spatial distribution of tau, measured with 18F-flortaucipir PET. We selected 78 genetically identical twins (39 pairs; average age 73 ± 6 years), enriched for amyloid-β pathology and APOE ε4 carriership, who underwent dynamic 18F-flortaucipir PET. We extracted binding potentials (BPND) in entorhinal, temporal, widespread neocortical and global regions, and examined within-pair similarities in BPND using age and sex corrected intra-class correlations. Furthermore, we tested whether twin-pairs showed a more similar spatial 18F-flortaucipir distribution compared to non-twin pairs, and whether the participant’s co-twin could be identified solely based on the spatial 18F-flortaucipir distribution. Last, we explored whether environmental (e.g. physical activity, obesity) factors could explain observed differences in twins of a pair in 18F-flortaucipir BPND. On visual inspection, Alzheimer’s disease-like 18F-flortaucipir PET patterns were observed, and although we mainly identified similarities in twin-pairs, some pairs showed strong dissimilarities. 18F-flortaucipir BPND was correlated in twins in the entorhinal (r = 0.40; P = 0.01), neocortical (r = 0.59; P < 0.01) and global (r = 0.56; P < 0.01) regions, but not in the temporal region (r = 0.20; P = 0.10). The 18F-flortaucipir distribution pattern was significantly more similar between twins of the same pair [mean r = 0.27; standard deviation (SD) = 0.09] than between non-twin pairings of participants (mean r = 0.01; SD = 0.10) (P < 0.01), also after correcting for proxies of off-target binding. Based on the spatial 18F-flortaucipir distribution, we could identify with an accuracy of 86% which twins belonged to the same pair. Finally, within-pair differences in 18F-flortaucipir BPND were associated with within-pair differences in depressive symptoms (0.37 < β < 0.56), physical activity (−0.41 < β < −0.42) and social activity (−0.32 < β < −0.36) (all P < 0.05). Overall, identical twin-pairs were comparable in tau load and spatial distribution, highlighting the important role of genetic factors in the accumulation and spreading of tau pathology. Considering also the presence of dissimilarities in tau pathology in identical twin-pairs, our results additionally support a role for (potentially modifiable) environmental factors in the onset of Alzheimer’s disease pathological processes, which may be of interest for future prevention strategies.
Collapse
Affiliation(s)
- Emma M. Coomans
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jori Tomassen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sandeep S. V. Golla
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke den Hollander
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lyduine E. Collij
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma Weltings
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sophie van der Landen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Emma E. Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- UCL Institute of Neurology, London, UK
| | - Eco J.C. de Geus
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm Sweden
| | - Bart N. M. van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anouk den Braber
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Biological Psychiatry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Das A. Religious attendance and global cognitive function: A fixed-effects cross-lagged panel modeling study of older U.S. adults. Soc Sci Med 2021; 292:114580. [PMID: 34823130 DOI: 10.1016/j.socscimed.2021.114580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Evidence linking religious attendance to better cognitive function is based on flawed study designs. No population representative longitudinal studies on the topic have taken both unobserved confounding and reverse causation into account. Recently developed fixed-effects cross-lagged panel modeling (FE-CLPM) offers simultaneous traction on these issues. It also allows parsing of long-from short-run effects. Using FE-CLPM and ten-year data from the Health and Retirement Study-a national probability sample of U.S. adults over age 50-this study began to fill the gaps above. METHODS Gender-specific FE-CLPM models were used to examine bidirectional and within-person linkages of religious attendance with global cognitive function. Granger-Sims "causality" tests further examined short-run effects in both directions. Impulse response analysis was used to explore time patterns in these linkages. RESULTS At least among women, religious attendance had negative short-term prospective linkages with global cognitive function. Over successive time points, these associations increased in strength among both genders. Feedback effects-of cognitive status on religious attendance-were found in both women's and men's models, but had a gender-specific pattern. DISCUSSION Results contradict a large literature positing cognitive benefits of religiosity. Instead, they lend support to a recent "neural resource depletion" model-especially among women. Overall, findings illustrate the "dark side" of religious engagement, which studies increasingly present as a social determinant with "outcome wide" positive effects on multiple health dimensions.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Sociology, McGill University, Room 712, Leacock Building, 855 Sherbrooke Street, Montreal, Quebec, H3A 2T7, Canada
| |
Collapse
|
5
|
Das A. The relational genomics of cognitive function: A longitudinal study. Soc Sci Med 2021; 270:113698. [PMID: 33465599 DOI: 10.1016/j.socscimed.2021.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Research in social genetics indicates a person's genome may influence outcomes of those in close relationships. Implications for cognitive function remain unexplored. The current study examined such "metagenomic" patterns among older U.S. couples. METHODS Data were from married or cohabiting couples in the 2006-2016 waves of the Health and Retirement Study, nationally representative of U.S. adults over 50. Measures included cognitive function as well as separate polygenic scores for cognition and for educational attainment. Analysis was through parallel process latent growth models. RESULTS Consistent with a recent "genetic externalities" conception, one partner's polygenic score for educational attainment was linked to the other's baseline levels of cognitive function. Contrary to relational moderation speculations, neither a partner's genetic scores nor educational attainment altered individual-level genetic influences. DISCUSSION Findings add to the growing evidence that transpersonal genetic influences in one's proximal context have substantively important implications. Research is needed on the role of non-partnership ties in channeling such effects. Implications for life course theory are discussed.
Collapse
Affiliation(s)
- Aniruddha Das
- Department of Sociology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Zannas AS. Gene-environment Interactions in Late Life: Linking Psychosocial Stress with Brain Aging. Curr Neuropharmacol 2018; 16:327-333. [PMID: 29119927 PMCID: PMC5843983 DOI: 10.2174/1570159x15666171109121452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/22/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Gene-environment interactions (GxE) can have lasting consequences on brain structure and function, potentially contributing to diverse neuropsychiatric phenotypes. This has been extensively demonstrated by studies examining GxE in childhood and early adulthood, whereas much fewer studies have addressed this question in late life. The relative paucity of studies examining GxE in late life may stem from the working hypothesis that brains become less malleable to environmental inputs as life progresses. However, while some components of brain plasticity decline with increasing age, others are retained and may even become more pronounced in old ages. Moreover, the micro- and macro-structural brain changes that accrue as a result of aging-related morbidities are likely to accentuate the susceptibility of neural circuits to environmental stressors as life advances. Supporting this hypothesis, psychosocial stress can increase the risk for late-life neuropsychiatric syndromes, especially when afflicting genetically predisposed individuals. This article reviews evidence showing how gene-stress interactions can impact the aging brain and related phenotypes in late life, and it discusses the potential mechanisms underlying such GxE and their implications for the prevention and treatment of late-life neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Anthony S. Zannas
- Address correspondence to this author at the Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, Munich, 80804, Germany; Tel: +498930622567; E-mail:
| |
Collapse
|
7
|
Futch HS, Croft CL, Truong VQ, Krause EG, Golde TE. Targeting psychologic stress signaling pathways in Alzheimer's disease. Mol Neurodegener 2017; 12:49. [PMID: 28633663 PMCID: PMC5479037 DOI: 10.1186/s13024-017-0190-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent progressive neurodegenerative disease; to date, no AD therapy has proven effective in delaying or preventing the disease course. In the search for novel therapeutic targets in AD, it has been shown that increased chronic psychologic stress is associated with AD risk. Subsequently, biologic pathways underlying psychologic stress have been identified and shown to be able to exacerbate AD relevant pathologies. In this review, we summarize the literature relevant to the association between psychologic stress and AD, focusing on studies investigating the effects of stress paradigms on transgenic mouse models of Amyloid-β (Aβ) and tau pathologies. In recent years, a substantial amount of research has been done investigating a key stress-response mediator, corticotropin-releasing hormone (CRH), and its interactions with AD relevant processes. We highlight attempts to target the CRH signaling pathway as a therapeutic intervention in these transgenic mouse models and discuss how targeting this pathway is a promising avenue for further investigation.
Collapse
Affiliation(s)
- Hunter S. Futch
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Cara L. Croft
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Van Q. Truong
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Eric G. Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| | - Todd E. Golde
- Department of Neuroscience, University of Florida, Gainesville, FL 32610 USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610 USA
- McKnight Brain Institute, University of Florida, 1149 Newell Drive, PO Box 1000015, Gainesville, FL 32610 USA
| |
Collapse
|
8
|
Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer's disease. Prog Neurobiol 2017; 151:101-138. [PMID: 27084356 PMCID: PMC5061605 DOI: 10.1016/j.pneurobio.2016.04.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/09/2016] [Accepted: 04/05/2016] [Indexed: 01/02/2023]
Abstract
None of the proposed mechanisms of Alzheimer's disease (AD) fully explains the distribution patterns of the neuropathological changes at the cellular and regional levels, and their clinical correlates. One aspect of this problem lies in the complex genetic, epigenetic, and environmental landscape of AD: early-onset AD is often familial with autosomal dominant inheritance, while the vast majority of AD cases are late-onset, with the ε4 variant of the gene encoding apolipoprotein E (APOE) known to confer a 5-20 fold increased risk with partial penetrance. Mechanisms by which genetic variants and environmental factors influence the development of AD pathological changes, especially neurofibrillary degeneration, are not yet known. Here we review current knowledge of the involvement of the monoaminergic systems in AD. The changes in the serotonergic, noradrenergic, dopaminergic, histaminergic, and melatonergic systems in AD are briefly described. We also summarize the possibilities for monoamine-based treatment in AD. Besides neuropathologic AD criteria that include the noradrenergic locus coeruleus (LC), special emphasis is given to the serotonergic dorsal raphe nucleus (DRN). Both of these brainstem nuclei are among the first to be affected by tau protein abnormalities in the course of sporadic AD, causing behavioral and cognitive symptoms of variable severity. The possibility that most of the tangle-bearing neurons of the LC and DRN may release amyloid β as well as soluble monomeric or oligomeric tau protein trans-synaptically by their diffuse projections to the cerebral cortex emphasizes their selective vulnerability and warrants further investigations of the monoaminergic systems in AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Selina Wray
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nataša Jovanov-Milošević
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danira Bažadona
- Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Luc Buée
- University of Lille, Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Lille, France
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Giuseppe Di Giovanni
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Claude M Wischik
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Patrick R Hof
- Fishberg Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Iacono D, Geraci-Erck M, Peng H, Bouffard JP. Symmetric Bihemispheric Postmortem Brain Cutting to Study Healthy and Pathological Brain Conditions in Humans. J Vis Exp 2016. [PMID: 28060309 DOI: 10.3791/54602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuropathologists, at times, feel intimidated by the amount of knowledge needed to generate definitive diagnoses for complex neuropsychiatric phenomena described in those patients for whom a brain autopsy has been requested. Although the advancements of biomedical sciences and neuroimaging have revolutionized the neuropsychiatric field, they have also generated the misleading idea that brain autopsies have only a confirmatory value. This false idea created a drastic reduction of autopsy rates and, consequently, a reduced possibility to perform more detailed and extensive neuropathological investigations, which are necessary to comprehend numerous normal and pathological aspects yet unknown of the human brain. The traditional inferential method of correlation between observed neuropsychiatric phenomena and corresponding localization/characterization of their possible neurohistological correlates continues to have an undeniable value. In the context of neuropsychiatric diseases, the traditional clinicopathological method is still the best possible methodology (and often the only available) to link unique neuropsychiatric features to their corresponding neuropathological substrates, since it relies specifically upon the direct physical assessment of brain tissues. The assessment of postmortem brains is based on brain cutting procedures that vary across different neuropathology centers. Brain cuttings are performed in a relatively extensive and systematic way based on the various clinical and academic contingencies present in each institution. A more anatomically inclusive and symmetric bi-hemispheric brain cutting methodology should at least be used for research purposes in human neuropathology to coherently investigate, in depth, normal and pathological conditions with the peculiarities of the human brain (i.e., hemispheric specialization and lateralization for specific functions). Such a method would provide a more comprehensive collection of neuropathologically well-characterized brains available for current and future biotechnological and neuroimaging techniques. We describe a symmetric bi-hemispheric brain cutting procedure for the investigation of hemispheric differences in human brain pathologies and for use with current as well as future biomolecular/neuroimaging techniques.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj);
| | - Maria Geraci-Erck
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj)
| | - Hui Peng
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj)
| | - John Paul Bouffard
- Department of Pathology, Atlantic Health System (AHS), Overlook Medical Center
| |
Collapse
|
10
|
Iacono D, Zandi P, Gross M, Markesbery WR, Pletnikova O, Rudow G, Troncoso JC. APOε2 and education in cognitively normal older subjects with high levels of AD pathology at autopsy: findings from the Nun Study. Oncotarget 2016; 6:14082-91. [PMID: 26101858 PMCID: PMC4546453 DOI: 10.18632/oncotarget.4118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/30/2015] [Indexed: 11/25/2022] Open
Abstract
Asymptomatic Alzheimer's disease (ASYMAD) subjects are individuals characterized by preserved cognition before death despite substantial AD pathology at autopsy. ASYMAD subjects show comparable levels of AD pathology, i.e. β-amyloid neuritic plaques (Aβ-NP) and tau-neurofibrillary tangles (NFT), to those observed in mild cognitive impairment (MCI) and some definite AD cases. Previous clinicopathologic studies on ASYMAD subjects have shown specific phenomena of hypertrophy in the cell bodies, nuclei, and nucleoli of hippocampal pyramidal neurons and other cerebral areas. Since it is well established that the allele APOε4 is a major genetic risk factor for AD, we examined whether specific alleles of APOE could be associated with the different clinical outcomes between ASYMAD and MCI subjects despite equivalent AD pathology. A total of 523 brains from the Nun Study were screened for this investigation. The results showed higher APOε2 frequency (p < 0.001) in ASYMAD (19.2%) vs. MCI (0%) and vs. AD (4.7%). Furthermore, higher education in ASYMAD vs. MCI and AD (p < 0.05) was found. These novel autopsy-verified findings support the hypothesis of the beneficial effect of APOε2 and education, both which seem to act as contributing factors in delaying or forestalling the clinical manifestations of AD despite consistent levels of AD pathology.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Neuropathology Research, Biomedical Research Institute of New Jersey, Cedar Knolls, NJ, USA.,Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ, USA.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Zandi
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - William R Markesbery
- Department of Pathology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Neurology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Alzheimer's Disease Center, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Olga Pletnikova
- Neuropathology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Gay Rudow
- Neuropathology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Juan C Troncoso
- Neuropathology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Maloney B, Lahiri DK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol 2016; 15:760-774. [PMID: 27302240 DOI: 10.1016/s1474-4422(16)00065-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/22/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease and other idiopathic dementias are associated with epigenetic transformations. These transformations connect the environment and genes to pathogenesis, and have led to the investigation of epigenetic-based therapeutic targes for the treatment of these diseases. Epigenetic changes occur over time in response to environmental effects. The epigenome-based latent early-life associated regulation (LEARn) hypothetical model indicates that accumulated environmental hits produce latent epigenetic changes. These hits can alter biochemical pathways until a pathological threshold is reached, which appears clinically as the onset of dementia. The hypotheses posed by LEARn are testable via longitudinal epigenome-wide, envirome-wide, and exposome-wide association studies (LEWAS) of the genome, epigenome, and environment. We posit that the LEWAS design could lead to effective prevention and treatments by identifying potential therapeutic strategies. Epigenetic evidence suggests that dementia is not a suddenly occurring and sharply delineated state, but rather a gradual change in crucial cellular pathways, that transforms an otherwise healthy state, as a result of neurodegeneration, to a dysfunctional state. Evidence from epigenetics could lead to ways to detect, prevent, and reverse such processes before clinical dementia.
Collapse
Affiliation(s)
- Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Neuroscience Research Center, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
12
|
Iacono D, Volkmann I, Nennesmo I, Pedersen NL, Fratiglioni L, Johansson B, Karlsson D, Winblad B, Gatz M. Same Ages, Same Genes: Same Brains, Same Pathologies?: Dementia Timings, Co-Occurring Brain Pathologies, ApoE Genotypes in Identical and Fraternal Age-matched Twins at Autopsy. Alzheimer Dis Assoc Disord 2016; 30:178-82. [PMID: 26492328 PMCID: PMC4840096 DOI: 10.1097/wad.0000000000000114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Diego Iacono
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Neurogeriatrics, Huddinge, Sweden
- Neuropathology Research, Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls, NJ, USA
- Atlantic Neuroscience Institute, Atlantic Health System, Overlook and Morristown Medical Center, NJ, USA
- Icahn School of Medicine at Mount Sinai, Department of Neurology, NY, USA
| | - Inga Volkmann
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Neurogeriatrics, Huddinge, Sweden
| | - Inger Nennesmo
- Department of Pathology, Division of Neuropathology, Karolinska Institutet, Huddinge Hospital, Huddinge, Sweden
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Aging Research Center (ARC), Karolinska Institutet/Stockholm University, Stockholm, Sweden
| | - Laura Fratiglioni
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Boo Johansson
- Department of Psychology, University of Göthenburg, Göthenburg, Sweden
| | - David Karlsson
- Department of Geriatric Rehabilitation, Värnamo Hospital, Värnamo, Sweden
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Neurogeriatrics, Huddinge, Sweden
| | - Margaret Gatz
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|