1
|
Baghdadi A, Dunn WR, Ralevic V. Involvement of purinergic signalling in the vasomotor response to hypochlorous acid in porcine coronary artery. Purinergic Signal 2025:10.1007/s11302-025-10086-7. [PMID: 40238052 DOI: 10.1007/s11302-025-10086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hypochlorous acid (HOCl) is generated by neutrophils during the innate immune response. ATP is released from cells by various stimuli and during inflammation but whether ATP is released by and participates in the response to HOCl is unclear. This study investigated vasomotor effects of HOCl on the porcine coronary artery (PCA) and the involvement of ATP and purine receptors. HOCl at 100 μM induced rapid and transient endothelium-dependent relaxation followed by slow and sustained endothelium-independent relaxation. Transient endothelium-dependent relaxation was induced by 500 μM HOCl, followed by endothelium-dependent contraction, then slow endothelium-independent relaxation. 8-(p-sulphophenyl)theophylline (8-SPT), an adenosine/P1 receptor antagonist, blocked rapid relaxation and contraction to HOCl but an A2A receptor antagonist, ZM 241385, and an A1 receptor antagonist, DPCPX, had no effect. Suramin, a P2 receptor antagonist (and membrane channel inhibitor), blocked rapid relaxation (at 100 μM HOCl) and contraction to HOCl. Other antagonists for P2, P2X1, P2Y1 and P2X4 receptors (PPADS, reactive blue 2, NF449, MRS2179 and BX430) did not affect HOCl responses. Relaxation to exogenous ATP was inhibited by 8-SPT but not by suramin suggesting that suramin block of HOCl responses may involve inhibition of membrane channels and endogenous ATP release. Apyrase, which hydrolyzes nucleotides, abolished responses to HOCl, ATP and unexpectedly adenosine. Neither probenecid nor carbenoxelone (connexin and pannexin channel inhibitors) blocked responses to HOCl. Luminescent ATP assay showed that HOCl elicited ATP release from cultures of human coronary artery endothelial cells. These findings advance our understanding of inflammation by showing that HOCl evokes endothelium-dependent vasorelaxation and contraction in coronary arteries which may involve P1 receptors implicating endogenous adenosine, possibly generated from rapid metabolism of ATP released by HOCl.
Collapse
Affiliation(s)
- Ashwaq Baghdadi
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
2
|
Alharthi N, Christensen P, Hourani W, Ortori C, Barrett DA, Bennett AJ, Chapman V, Alexander SPH. n-3 polyunsaturated N-acylethanolamines are CB 2 cannabinoid receptor-preferring endocannabinoids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1433-1440. [PMID: 30591150 DOI: 10.1016/j.bbalip.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/04/2018] [Indexed: 12/16/2022]
Abstract
Anandamide, the first identified endogenous cannabinoid and TRPV1 agonist, is one of a series of endogenous N-acylethanolamines, NAEs. We have generated novel assays to quantify the levels of multiple NAEs in biological tissues and their rates of hydrolysis through fatty acid amide hydrolase. This range of NAEs was also tested in rapid response assays of CB1, CB2 cannabinoid and TRPV1 receptors. The data indicate that PEA, SEA and OEA are not endocannabinoids or endovanilloids, and that the higher endogenous levels of these metabolites compared to polyunsaturated analogues are a correlate of their slow rates of hydrolysis. The n-6 NAEs (AEA, docosatetraenoyl and docosapentaenoyl derivatives) activated both CB1 and CB2 receptors, as well as TRPV1 channels, suggesting them to be 'genuine' endocannabinoids and 'endovanilloids'. The n-3 NAEs (eicosapentaenoyl, docosapentaenoyl and docosahexaenoyl derivatives) activated CB2 receptors and some n-3 NAEs (docosapentaenoyl and docosahexaenoyl derivatives) also activated TRPV1 channels, but failed to activate the CB1 receptor. We hypothesise that the preferential activation of CB2 receptors by n-3 PUFA NAEs contributes, at least in some part, to their broad anti-inflammatory profile.
Collapse
Affiliation(s)
- Nahed Alharthi
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Peter Christensen
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Wafa Hourani
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Catherine Ortori
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, England, United Kingdom of Great Britain and Northern Ireland
| | - Andrew J Bennett
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Victoria Chapman
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland
| | - Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, England, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
3
|
Park SY, Rossman MJ, Gifford JR, Bharath LP, Bauersachs J, Richardson RS, Abel ED, Symons JD, Riehle C. Exercise training improves vascular mitochondrial function. Am J Physiol Heart Circ Physiol 2016; 310:H821-9. [PMID: 26825520 DOI: 10.1152/ajpheart.00751.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
Abstract
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1,isocitrate dehydrogenase(Idh)2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser(1177)), and suppressed reactive oxygen species generation (all P< 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Leena P Bharath
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah; and Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
4
|
Abstract
There are nineteen different receptor proteins for adenosine, adenine and uridine nucleotides, and nucleotide sugars, belonging to three families of G protein-coupled adenosine and P2Y receptors, and ionotropic P2X receptors. The majority are functionally expressed in blood vessels, as purinergic receptors in perivascular nerves, smooth muscle and endothelial cells, and roles in regulation of vascular contractility, immune function and growth have been identified. The endogenous ligands for purine receptors, ATP, ADP, UTP, UDP and adenosine, can be released from different cell types within the vasculature, as well as from circulating blood cells, including erythrocytes and platelets. Many purine receptors can be activated by two or more of the endogenous ligands. Further complexity arises because of interconversion between ligands, notably adenosine formation from the metabolism of ATP, leading to complex integrated responses through activation of different subtypes of purine receptors. The enzymes responsible for this conversion, ectonucleotidases, are present on the surface of smooth muscle and endothelial cells, and may be coreleased with neurotransmitters from nerves. What selectivity there is for the actions of purines/pyrimidines comes from differential expression of their receptors within the vasculature. P2X1 receptors mediate the vasocontractile actions of ATP released as a neurotransmitter with noradrenaline (NA) from sympathetic perivascular nerves, and are located on the vascular smooth muscle adjacent to the nerve varicosities, the sites of neurotransmitter release. The relative contribution of ATP and NA as functional cotransmitters varies with species, type and size of blood vessel, neuronal firing pattern, the tone/pressure of the blood vessel, and in ageing and disease. ATP is also a neurotransmitter in non-adrenergic non-cholinergic perivascular nerves and mediates vasorelaxation via smooth muscle P2Y-like receptors. ATP and adenosine can act as neuromodulators, with the most robust evidence being for prejunctional inhibition of neurotransmission via A1 adenosine receptors, but also prejunctional excitation and inhibition of neurotransmission via P2X and P2Y receptors, respectively. P2Y2, P2Y4 and P2Y6 receptors expressed on the vascular smooth muscle are coupled to vasocontraction, and may have a role in pathophysiological conditions, when purines are released from damaged cells, or when there is damage to the protective barrier that is the endothelium. Adenosine is released during hypoxia to increase blood flow via vasodilator A2A and A2B receptors expressed on the endothelium and smooth muscle. ATP is released from endothelial cells during hypoxia and shear stress and can act at P2Y and P2X4 receptors expressed on the endothelium to increase local blood flow. Activation of endothelial purine receptors leads to the release of nitric oxide, hyperpolarising factors and prostacyclin, which inhibits platelet aggregation and thus ensures patent blood flow. Vascular purine receptors also regulate endothelial and smooth muscle growth, and inflammation, and thus are involved in the underlying processes of a number of cardiovascular diseases.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
5
|
Alefishat E, Alexander SPH, Ralevic V. Effects of NAD at purine receptors in isolated blood vessels. Purinergic Signal 2014; 11:47-57. [PMID: 25315718 DOI: 10.1007/s11302-014-9428-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/23/2014] [Indexed: 11/25/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) belongs to the family of naturally occurring adenine dinucleotides, best known for their various intracellular roles. However, there is evidence that they can also be released from cells to act as novel extracellular signalling molecules. Relatively little is known about the extracellular actions of NAD, especially in the cardiovascular system. The present study investigated the actions of NAD in the rat thoracic aorta, porcine coronary artery and porcine mesenteric arteries, mounted in organ baths for isometric tension recording. In the rat thoracic aorta and porcine coronary artery, NAD caused endothelium-independent concentration-dependent vasorelaxations which were unaffected by palmitoylCoA, a P2Y1 receptor antagonist, but which were blocked by CGS15943, a non-selective adenosine receptor antagonist. In the porcine coronary artery, NAD-evoked relaxations were abolished by SCH58261, a selective A2A receptor antagonist. In the rat thoracic aorta, NAD-evoked relaxations were attenuated by A2A receptor antagonism with SCH58261 but were unaffected by an A2B receptor antagonist, MRS1754. In contrast, in the porcine mesenteric artery, NAD-evoked endothelium-independent contractions, which were unaffected by a P2 receptor antagonist, suramin, or by NF449, a P2X1 receptor antagonist, but were attenuated following P2X receptor desensitisation with αβ-meATP. In conclusion, the present results show that NAD can alter vascular tone through actions at purine receptors in three different arteries from two species; its molecular targets differ according to the type of blood vessel.
Collapse
Affiliation(s)
- E Alefishat
- Department of Biopharmaceutics and Clinical Pharmacy Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| | | | | |
Collapse
|
6
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|