1
|
Islam MS. Ryanodine Receptors in Islet Cell Function: Calcium Signaling, Hormone Secretion, and Diabetes. Cells 2025; 14:690. [PMID: 40422193 DOI: 10.3390/cells14100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling and hormone secretion, while addressing the ongoing debate regarding their significance due to their limited expression. We explore conflicting experimental results and their potential causes, synthesizing current knowledge on RyR isoforms in islet cells, particularly in beta and delta cells. The review discusses how RyR-mediated calcium-induced calcium release enhances, rather than drives, glucose-stimulated insulin secretion. We examine the phosphorylation-dependent regulation of beta-cell RyRs, the concept of "leaky ryanodine receptors", and the roles of RyRs in endoplasmic reticulum stress, apoptosis, store-operated calcium entry, and beta-cell electrical activity. The relationship between RyR dysfunction and the development of impaired insulin secretion in diabetes is assessed, noting their limited role in human diabetes pathogenesis given the disease's polygenic nature. We highlight the established role of RyR-mediated CICR in the mechanism of action of common type 2 diabetes treatments, such as glucagon-like peptide-1, which enhances insulin secretion. By integrating findings from electrophysiological, molecular, and clinical studies, this review provides a balanced perspective on RyRs in islet cell physiology and pathology, emphasizing their significance in both normal insulin secretion and current diabetes therapies.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Karolinska Institutet, Department of Clinical Sciences and Education, Södersjukhuset, Research Center, 5th Floor, SE-118 83 Stockholm, Sweden
- Department of Internal Medicine, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| |
Collapse
|
2
|
Rubaiy HN. ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals (Basel) 2023; 16:162. [PMID: 37259313 PMCID: PMC9967976 DOI: 10.3390/ph16020162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 11/25/2023] Open
Abstract
The changes in intracellular free calcium (Ca2+) levels are one of the most widely regulators of cell function; therefore, calcium as a universal intracellular mediator is involved in very important human diseases and disorders. In many cells, Ca2+ inflow is mediated by store-operated calcium channels, and it is recognized that the store-operated calcium entry (SOCE) is mediated by the two partners: the pore-forming proteins Orai (Orai1-3) and the calcium store sensor, stromal interaction molecule (STIM1-2). Importantly, the Orai/STIM channels are involved in crucial cell signalling processes such as growth factors, neurotransmitters, and cytokines via interaction with protein tyrosine kinase coupled receptors and G protein-coupled receptors. Therefore, in recent years, the issue of Orai/STIM channels as a drug target in human diseases has received considerable attention. This review summarizes and highlights our current knowledge of the Orai/STIM channels in human diseases and disorders, including immunodeficiency, myopathy, tubular aggregate, Stormorken syndrome, York platelet syndrome, cardiovascular and metabolic disorders, and cancers, as well as suggesting these channels as drug targets for pharmacological therapeutic intervention. Moreover, this work will also focus on the pharmacological modulators of Orai/STIM channel complexes. Together, our thoughtful of the biology and physiology of the Orai/STIM channels have grown remarkably during the past three decades, and the next important milestone in the field of store-operated calcium entry will be to identify potent and selective small molecules as a therapeutic agent with the purpose to target human diseases and disorders for patient benefit.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institute and Karolinska University Hospital, C1:68, 141 86 Stockholm, Sweden
| |
Collapse
|
3
|
Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. Biomaterials 2022; 290:121823. [DOI: 10.1016/j.biomaterials.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
4
|
Zaibi N, Li P, Xu SZ. Protective effects of dapagliflozin against oxidative stress-induced cell injury in human proximal tubular cells. PLoS One 2021; 16:e0247234. [PMID: 33606763 PMCID: PMC7894948 DOI: 10.1371/journal.pone.0247234] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Elevated reactive oxygen species (ROS) in type 2 diabetes cause cellular damage in many organs. Recently, the new class of glucose-lowering agents, SGLT-2 inhibitors, have been shown to reduce the risk of developing diabetic complications; however, the mechanisms of such beneficial effect are largely unknown. Here we aimed to investigate the effects of dapagliflozin on cell proliferation and cell death under oxidative stress conditions and explore its underlying mechanisms. Human proximal tubular cells (HK-2) were used. Cell growth and death were monitored by cell counting, water-soluble tetrazolium-1 (WST-1) and lactate dehydrogenase (LDH) assays, and flow cytometry. The cytosolic and mitochondrial (ROS) production was measured using fluorescent probes (H2DCFDA and MitoSOX) under normal and oxidative stress conditions mimicked by addition of H2O2. Intracellular Ca2+ dynamics was monitored by FlexStation 3 using cell-permeable Ca2+ dye Fura-PE3/AM. Dapagliflozin (0.1–10 μM) had no effect on HK-2 cell proliferation under normal conditions, but an inhibitory effect was seen at an extreme high concentration (100 μM). However, dapagliflozin at 0.1 to 5 μM showed remarkable protective effects against H2O2-induced cell injury via increasing the viable cell number at phase G0/G1. The elevated cytosolic and mitochondrial ROS under oxidative stress was significantly decreased by dapagliflozin. Dapagliflozin increased the basal intracellular [Ca2+]i in proximal tubular cells, but did not affect calcium release from endoplasmic reticulum and store-operated Ca2+ entry. The H2O2-sensitive TRPM2 channel seemed to be involved in the Ca2+ dynamics regulated by dapagliflozin. However, dapagliflozin had no direct effects on ORAI1, ORAI3, TRPC4 and TRPC5 channels. Our results suggest that dapagliflozin shows anti-oxidative properties by reducing cytosolic and mitochondrial ROS production and altering Ca2+ dynamics, and thus exerts its protective effects against cell damage under oxidative stress environment.
Collapse
Affiliation(s)
- Nawel Zaibi
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Pengyun Li
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
- Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Liu J, Ge Y, Wang N, Wen J, Wang W, Zeng B, Chen GL. A Simple and Efficient Method to Generate Gene-Knockout and Transgenic Cell Lines. DNA Cell Biol 2020; 40:239-246. [PMID: 33395371 DOI: 10.1089/dna.2020.6183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Knockout (KO) or exogenous expression of a gene of interest in cultured cells is one of the most important ways to study the function of the gene. Compared with transient transfection, stable cell lines possess great advantages such as excellent cell homogeneity and feasibility for long-term use. However, technical challenges in generating stable cell lines still exist in many laboratories using conventional techniques like limiting dilution or cloning cylinders. In this study we describe an optimized method to efficiently create stable cell lines for functional studies. This method was successfully used to generate a PIEZO1 gene-KO cell line with the CRISPR/Cas9 technology, and TRPC5/GCaMP6f-mCherry-coexpressing cell lines without antibiotic selection. Monoclonal cell lines can be obtained in 2-4 weeks after transfection. This method does not require any special equipment or consumables and can be conducted in all laboratories with general cell-culture facility.
Collapse
Affiliation(s)
- Jieyu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Ge
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Czeredys M. Dysregulation of Neuronal Calcium Signaling via Store-Operated Channels in Huntington's Disease. Front Cell Dev Biol 2020; 8:611735. [PMID: 33425919 PMCID: PMC7785827 DOI: 10.3389/fcell.2020.611735] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric problems. It is caused by a polyglutamine expansion in the huntingtin protein that leads to striatal degeneration via the transcriptional dysregulation of several genes, including genes that are involved in the calcium (Ca2+) signalosome. Recent research has shown that one of the major Ca2+ signaling pathways, store-operated Ca2+ entry (SOCE), is significantly elevated in HD. SOCE refers to Ca2+ flow into cells in response to the depletion of endoplasmic reticulum Ca2+ stores. The dysregulation of Ca2+ homeostasis is postulated to be a cause of HD progression because the SOCE pathway is indirectly and abnormally activated by mutant huntingtin (HTT) in γ-aminobutyric acid (GABA)ergic medium spiny neurons (MSNs) from the striatum in HD models before the first symptoms of the disease appear. The present review summarizes recent studies that revealed a relationship between HD pathology and elevations of SOCE in different models of HD, including YAC128 mice (a transgenic model of HD), cellular HD models, and induced pluripotent stem cell (iPSC)-based GABAergic medium spiny neurons (MSNs) that are obtained from adult HD patient fibroblasts. SOCE in MSNs was shown to be mediated by currents through at least two different channel groups, Ca2+ release-activated Ca2+ current (ICRAC) and store-operated Ca2+ current (ISOC), which are composed of stromal interaction molecule (STIM) proteins and Orai or transient receptor potential channel (TRPC) channels. Their role under physiological and pathological conditions in HD are discussed. The role of Huntingtin-associated protein 1 isoform A in elevations of SOCE in HD MSNs and potential compounds that may stabilize elevations of SOCE in HD are also summarized. Evidence is presented that shows that the dysregulation of molecular components of SOCE or pathways upstream of SOCE in HD MSN neurons is a hallmark of HD, and these changes could lead to HD pathology, making them potential therapeutic targets.
Collapse
Affiliation(s)
- Magdalena Czeredys
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Danta CC, Boa AN, Bhandari S, Sathyapalan T, Xu SZ. Recent advances in drug discovery for diabetic kidney disease. Expert Opin Drug Discov 2020; 16:447-461. [PMID: 33003971 DOI: 10.1080/17460441.2021.1832077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD), and 40% of patients with diabetes develop DKD. Although some pathophysiological mechanisms and drug targets of DKD have been described, the effectiveness or clinical usefulness of such treatment has not been well validated. Therefore, searching for new targets and potential therapeutic candidates has become an emerging research area. AREAS COVERED The pathophysiological mechanisms, new drug targets and potential therapeutic compounds for DKD are addressed in this review. EXPERT OPINION Although preclinical and clinical evidence has shown some positive results for controlling DKD progression, treatment regimens have not been well developed to reduce the mortality in patients with DKD globally. Therefore, the discovery of new therapeutic targets and effective target-based drugs to achieve better and safe treatment are urgently required. Preclinical screening and clinical trials for such drugs are needed.
Collapse
Affiliation(s)
- Chhanda Charan Danta
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Andrew N Boa
- Department of Chemistry, University of Hull, Hull, UK
| | - Sunil Bhandari
- Department of Renal Medicine and Hull York Medical School, Hull Royal Infirmary, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
8
|
Zhao P, Tian D, Song G, Ming Q, Liu J, Shen J, Liu QH, Yang X. Neferine Promotes GLUT4 Expression and Fusion With the Plasma Membrane to Induce Glucose Uptake in L6 Cells. Front Pharmacol 2019; 10:999. [PMID: 31551792 PMCID: PMC6737894 DOI: 10.3389/fphar.2019.00999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Glucose transporter 4 (GLUT4) is involved in regulating glucose uptake in striated muscle, liver, and adipose tissue. Neferine is a dibenzyl isoquinoline alkaloid derived from dietary lotus seeds and has multiple pharmacological effects. Therefore, this study investigated neferine’s role in glucose translocation to cell surface, glucose uptake, and GLUT4 expression. In our study, neferine upregulated GLUT4 expression, induced GLUT4 plasma membrane fusion, increased intracellular Ca2+, promoted glucose uptake, and alleviated insulin resistance in L6 cells. Furthermore, neferine significantly activated phosphorylation of AMP-activated protein kinase (AMPK) and protein kinase C (PKC). AMPK and PKC inhibitors blocked neferine-induced GLUT4 expression and increased intracellular Ca2+. While neferine-induced GLUT4 expression and intracellular Ca2+ were inhibited by G protein and PLC inhibitors, only intracellular Ca2+ was inhibited by inositol trisphosphate receptor (IP3R) inhibitors. Thus, neferine promoted GLUT4 expression via the G protein-PLC-PKC and AMPK pathways, inducing GLUT4 plasma membrane fusion and subsequent glucose uptake and increasing intracellular Ca2+ through the G protein-PLC-IP3-IP3R pathway. Treatment with 0 mM extracellular Ca2+ + Ca2+ chelator did not inhibit neferine-induced GLUT4 expression but blocked neferine-induced GLUT4 plasma membrane fusion and glucose uptake, suggesting the latter two are Ca2+-dependent. Therefore, we conclude that neferine is a potential treatment for type 2 diabetes.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Guanjun Song
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, China.,Hubei Medical Biology International Science and Technology Cooperation Base, Wuhan, China
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, China.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
9
|
Li P, Rubaiy HN, Chen GL, Hallett T, Zaibi N, Zeng B, Saurabh R, Xu SZ. Mibefradil, a T-type Ca 2+ channel blocker also blocks Orai channels by action at the extracellular surface. Br J Pharmacol 2019; 176:3845-3856. [PMID: 31271653 DOI: 10.1111/bph.14788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Mibefradil, a T-type Ca2+ channel blocker, has been investigated for treating solid tumours. However, its underlying mechanisms are still unclear. Here, we have investigated the pharmacological actions of mibefradil on Orai store-operated Ca2+ channels. EXPERIMENTAL APPROACH Human Orai1-3 cDNAs in tetracycline-regulated pcDNA4/TO vectors were transfected into HEK293 T-REx cells with stromal interaction molecule 1 (STIM1) stable expression. The Orai currents were recorded by whole-cell and excised-membrane patch clamp. Ca2+ influx or release was measured by Fura-PE3/AM. Cell growth and death were monitored by WST-1, LDH assays and flow cytometry. KEY RESULTS Mibefradil inhibited Orai1, Orai2, and Orai3 currents dose-dependently. The IC50 for Orai1, Orai2, and Orai3 channels was 52.6, 14.1, and 3.8 μM respectively. Outside-out patch demonstrated that perfusion of 10-μM mibefradil to the extracellular surface completely blocked Orai3 currents and single channel activity evoked by 2-APB. Intracellular application of mibefradil did not alter Orai3 channel activity. Mibefradil at higher concentrations (>50 μM) inhibited Ca2+ release but had no effect on cytosolic STIM1 translocation evoked by thapsigargin. Inhibition on Orai channels by mibefradil was structure-related, as other T-type Ca2+ channel blockers with different structures, such as ethosuximide and ML218, had no or minimal effects on Orai channels. Moreover, mibefradil inhibited cell proliferation, induced apoptosis, and arrested cell cycle progression. CONCLUSIONS AND IMPLICATIONS Mibefradil is a potent cell surface blocker of Orai channels, demonstrating a new pharmacological action of this compound in regulating cell growth and death, which could be relevant to its anti-cancer activity.
Collapse
Affiliation(s)
- Pengyun Li
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Hussein N Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Gui-Lan Chen
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Thomas Hallett
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Nawel Zaibi
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, and Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Rahul Saurabh
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Shang-Zhong Xu
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
10
|
Zhao P, Ming Q, Qiu J, Tian D, Liu J, Shen J, Liu QH, Yang X. Ethanolic Extract of Folium Sennae Mediates the Glucose Uptake of L6 Cells by GLUT4 and Ca 2. Molecules 2018; 23:molecules23112934. [PMID: 30424024 PMCID: PMC6278344 DOI: 10.3390/molecules23112934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
In today’s world, diabetes mellitus (DM) is on the rise, especially type 2 diabetes mellitus (T2DM), which is characterized by insulin resistance. T2DM has high morbidity, and therapies with natural products have attracted much attention in the recent past. In this paper, we aimed to study the hypoglycemic effect and the mechanism of an ethanolic extract of Folium Sennae (FSE) on L6 cells. The glucose uptake of L6 cells was investigated using a glucose assay kit. We studied glucose transporter 4 (GLUT4) expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), and protein kinase C (PKC) phosphorylation levels using western blot analysis. GLUT4 trafficking and intracellular Ca2+ levels were monitored by laser confocal microscopy in L6 cells stably expressing IRAP-mOrange. GLUT4 fusion with plasma membrane (PM) was observed by myc-GLUT4-mOrange. FSE stimulated glucose uptake; GLUT4 expression and translocation; PM fusion; intracellular Ca2+ elevation; and the phosphorylation of AMPK, Akt, and PKC in L6 cells. GLUT4 translocation was weakened by the AMPK inhibitor compound C, PI3K inhibitor Wortmannin, PKC inhibitor Gö6983, G protein inhibitor PTX/Gallein, and PLC inhibitor U73122. Similarly, in addition to PTX/Gallein and U73122, the IP3R inhibitor 2-APB and a 0 mM Ca2+-EGTA solution partially inhibited the elevation of intracellular Ca2+ levels. BAPTA-AM had a significant inhibitory effect on FSE-mediated GLUT4 activities. In summary, FSE regulates GLUT4 expression and translocation by activating the AMPK, PI3K/Akt, and G protein–PLC–PKC pathways. FSE causes increasing Ca2+ concentration to complete the fusion of GLUT4 vesicles with PM, allowing glucose uptake. Therefore, FSE may be a potential drug for improving T2DM.
Collapse
Affiliation(s)
- Ping Zhao
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qian Ming
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Junying Qiu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Di Tian
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jia Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jinhua Shen
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Qing-Hua Liu
- Institute for Medical Biology & Hubei Provincial Key Laboratory for Protection and Application of Special Plants in the Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Xinzhou Yang
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China.
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 182 Min-Zu Road, Wuhan 430074, China.
| |
Collapse
|
11
|
Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway. Sci Rep 2017; 7:226. [PMID: 28331181 PMCID: PMC5428205 DOI: 10.1038/s41598-017-00386-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/23/2017] [Indexed: 11/30/2022] Open
Abstract
The impact of nanomaterials on immune cells is gaining attention but is not well documented. Here, we report a novel stimulating effect of carboxylated multi-walled carbon nanotubes (c-MWCNTs) on the migration of macrophages and uncover the underlying mechanisms, especially the upstream signaling, using a series of techniques including transwell migration assay, patch clamp, ELISA and confocal microscopy. c-MWCNTs dramatically stimulated the migration of RAW264.7 macrophages when endocytosed, and this effect was abolished by inhibiting phospholipase C (PLC) with U-73122, antagonizing the IP3 receptor with 2-APB, and blocking calcium release-activated calcium (CRAC) channels with SK&F96365. c-MWCNTs directly activated PLC and increased the IP3 level and [Ca2+]i level in RAW264.7 cells, promoted the translocation of the ER-resident stromal interaction molecule 1 (STIM1) towards the membranous calcium release-activated calcium channel modulator 1 (Orai1), and increased CRAC current densities in both RAW264.7 cells and HEK293 cells stably expressing the CRAC channel subunits Orai1 and STIM1. c-MWCNTs also induced dramatic spatial polarization of KCa3.1 channels in the RAW264.7 cells. We conclude that c-MWCNT is an activator of PLC and strongly recruits macrophages via the PLC/IP3/CRAC channel signaling cascade. These novel findings may provide a fundamental basis for the impact of MWCNTs on the immune system.
Collapse
|
12
|
Horio F, Sakurai H, Ohsawa Y, Nakano S, Matsukura M, Fujii I. Functional validation and expression analysis of myotubes converted from skin fibroblasts using a simple direct reprogramming strategy. eNeurologicalSci 2016; 6:9-15. [PMID: 29260008 PMCID: PMC5721582 DOI: 10.1016/j.ensci.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/01/2016] [Indexed: 12/07/2022] Open
Abstract
Previously, we reported that MyoD, a master gene for myogenic cells, could efficiently convert primary skin fibroblasts into myoblasts and myotubes, thereby effecting direct reprogramming. In this study, we further demonstrated that MyoD-expressing primary fibroblasts displayed rapid movement in culture, with a movement velocity that was significantly faster, almost four times, than mouse primary myoblasts. MyoD-transduced cells obtained the characteristics of Ca2 + release and electrically-stimulated contraction, which was comparable to C2C12 myotubes, suggesting that the essential features of muscle were observed in the transduced cells. Furthermore, the ability to fuse to the host myoblasts means that gene transfer from MyoD-transduced cells to host muscle cells could be obtained by cell fusion. In comparison with the iPS method (indirect reprogramming), our transduction method has a low risk for tumorigenesis and carcinogenesis because the starting cells are fibroblasts and the transduced cells are myoblasts, both normal and mortal cells. Accordingly, MyoD transduction of human skin fibroblasts using the adenoviral vector is a simple, inexpensive and promising candidate as a new cell transplantation therapy for patients with muscular disorders. Adenoviral MyoD vector transduced fibroblasts directly to myoblasts. Myoblast cells were well differentiated into functional muscle cells. Direct reprogramming is cost-effective and safe compared to iPS method. Cell fusion and high motility were observed in MyoD-transduced cells. Transduced cells are candidates for cell transplantation in muscle disorders.
Collapse
Affiliation(s)
- Fukuko Horio
- Laboratory of Clinical Pharmacology and Therapeutics, Division of Clinical Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Shiho Nakano
- Laboratory of Clinical Pharmacology and Therapeutics, Division of Clinical Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Matsukura
- Laboratory of Clinical Pharmacology and Therapeutics, Division of Clinical Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Isao Fujii
- Laboratory of Clinical Pharmacology and Therapeutics, Division of Clinical Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
13
|
Lin AHY, Sun H, Paudel O, Lin MJ, Sham JSK. Conformation of ryanodine receptor-2 gates store-operated calcium entry in rat pulmonary arterial myocytes. Cardiovasc Res 2016; 111:94-104. [PMID: 27013634 DOI: 10.1093/cvr/cvw067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Store-operated Ca(2+) entry (SOCE) contributes to a multitude of physiological and pathophysiological functions in pulmonary vasculatures. SOCE attributable to inositol 1,4,5-trisphosphate receptor (InsP3R)-gated Ca(2+) store has been studied extensively, but the role of ryanodine receptor (RyR)-gated store in SOCE remains unclear. The present study aims to delineate the relationship between RyR-gated Ca(2+) stores and SOCE, and characterize the properties of RyR-gated Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). METHODS AND RESULTS PASMCs were isolated from intralobar pulmonary arteries of male Wister rats. Application of the RyR1/2 agonist 4-chloro-m-cresol (4-CmC) activated robust Ca(2+) entry in PASMCs. It was blocked by Gd(3+) and the RyR2 modulator K201 but was unaffected by the RyR1/3 antagonist dantrolene and the InsP3R inhibitor xestospongin C, suggesting RyR2 is mainly involved in the process. siRNA knockdown of STIM1, TRPC1, and Orai1, or interruption of STIM1 translocation with ML-9 significantly attenuated the 4-CmC-induced SOCE, similar to SOCE induced by thapsigargin. However, depletion of RyR-gated store with caffeine failed to activate Ca(2+) entry. Inclusion of ryanodine, which itself did not cause Ca(2+) entry, uncovered caffeine-induced SOCE in a concentration-dependent manner, suggesting binding of ryanodine to RyR is permissive for the process. This Ca(2+) entry had the same molecular and pharmacological properties of 4-CmC-induced SOCE, and it persisted once activated even after caffeine washout. Measurement of Ca(2+) in sarcoplasmic reticulum (SR) showed that 4-CmC and caffeine application with or without ryanodine reduced SR Ca(2+) to similar extent, suggesting store-depletion was not the cause of the discrepancy. Moreover, caffeine/ryanodine and 4-CmC failed to initiate SOCE in cells transfected with the ryanodine-binding deficient mutant RyR2-I4827T. CONCLUSIONS RyR2-gated Ca(2+) store contributes to SOCE in PASMCs; however, store-depletion alone is insufficient but requires a specific RyR conformation modifiable by ryanodine binding to activate Ca(2+) entry.
Collapse
Affiliation(s)
- Amanda H Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Hui Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Mo-Jun Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|