1
|
Yang Y, Tan Y, Zhangsun D, Zhu X, Luo S. Design, Synthesis, and Activity of an α-Conotoxin LtIA Fluorescent Analogue. ACS Chem Neurosci 2021; 12:3662-3671. [PMID: 34523332 DOI: 10.1021/acschemneuro.1c00392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are essential pentameric ligand-gated ion channels that are distributed throughout the central and peripheral nervous systems and non-neuronal tissues in mammalian species that play critical roles in a variety of neural and mental activities. The α3β2 nAChR subtype participates in pain, addiction to nicotine, and other neurophysiological and pathological activities. Owing to the lack of highly selective pharmacological tools targeting α3β2, related research on its tissue distribution and function has been hindered. α-Conotoxin (α-CTx) LtIA, discovered from Conus literatus in our lab, potently and selectively blocks α3β2 nAChR, providing an important molecular probe to study the α3β2 nAChR structure and function. We used the fluorescent molecule 5-carboxytetramethylrhodamine succinimidyl ester, which can react with the N-terminus of LtIA, to obtain a novel fluorescent analogue of LtIA (LtIA-F). The potency and selectivity of LtIA-F were tested using a two-electrode voltage clamp recording on various nAChRs expressed in Xenopus laevis oocytes. LtIA-F potently inhibited ACh-evoked currents at the α3β2 nAChR, with an IC50 value of 90.66 nM, displaying a ∼4-fold decrease in potency compared with native LtIA without a change in selectivity. The serum stability results indicated that LtIA-F exhibited stability similar to that of native LtIA. This study on an α-CTx LtIA fluorescent analogue provides a wealth of pharmacological tools to explore the structure-function relationship, distribution, and ligand binding domain of the α3β2 nAChR subtype.
Collapse
Affiliation(s)
- Yishuai Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yao Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
2
|
Luo X, Ye X, Ding L, Zhu W, Yi P, Zhao Z, Gao H, Shu Z, Li S, Sang M, Wang J, Zhong W, Chen Z. Fine-Tuning of Alkaline Residues on the Hydrophilic Face Provides a Non-toxic Cationic α-Helical Antimicrobial Peptide Against Antibiotic-Resistant ESKAPE Pathogens. Front Microbiol 2021; 12:684591. [PMID: 34335511 PMCID: PMC8319832 DOI: 10.3389/fmicb.2021.684591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become a serious threat to public health worldwide. Cationic α-helical antimicrobial peptides (CαAMPs) have attracted much attention as promising solutions in post-antibiotic era. However, strong hemolytic activity and in vivo inefficacy have hindered their pharmaceutical development. Here, we attempt to address these obstacles by investigating BmKn2 and BmKn2-7, two scorpion-derived CαAMPs with the same hydrophobic face and a distinct hydrophilic face. Through structural comparison, mutant design and functional analyses, we found that while keeping the hydrophobic face unchanged, increasing the number of alkaline residues (i.e., Lys + Arg residues) on the hydrophilic face of BmKn2 reduces the hemolytic activity and broadens the antimicrobial spectrum. Strikingly, when keeping the total number of alkaline residues constant, increasing the number of Lys residues on the hydrophilic face of BmKn2-7 significantly reduces the hemolytic activity but does not influence the antimicrobial activity. BmKn2-7K, a mutant of BmKn2-7 in which all of the Arg residues on the hydrophilic face were replaced with Lys, showed the lowest hemolytic activity and potent antimicrobial activity against antibiotic-resistant ESKAPE pathogens. Moreover, in vivo experiments indicate that BmKn2-7K displays potent antimicrobial efficacy against both the penicillin-resistant S. aureus and the carbapenem- and multidrug-resistant A. baumannii, and is non-toxic at the antimicrobial dosages. Taken together, our work highlights the significant functional disparity of Lys vs Arg in the scorpion-derived antimicrobial peptide BmKn2-7, and provides a promising lead molecule for drug development against ESKAPE pathogens.
Collapse
Affiliation(s)
- Xudong Luo
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiangdong Ye
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Li Ding
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Wen Zhu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Pengcheng Yi
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Huanhuan Gao
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Zhan Shu
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Ming Sang
- Central Laboratory of Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, China
| | - Jue Wang
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Weihua Zhong
- Department of Rehabilitation Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongyun Chen
- Institute of Biomedicine and Hubei Key Laboratory of Embryonic Stem Cell Research, College of Basic Medicine, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
3
|
Kan MW, Craik DJ. Discovery of Cyclotides from Australasian Plants. Aust J Chem 2020. [DOI: 10.1071/ch19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article is part of a special issue celebrating the contributions of Professor Paul Alewood to peptide science. We begin by providing a summary of collaborative projects between the Alewood and Craik groups at The University of Queensland and highlighting the impacts of some of these studies. In particular, studies on the discovery, synthesis, structures, and bioactivities of disulfide-rich toxins from animal venoms have led to a greater understanding of the biology of ion channels and to applications of these bioactive peptides in drug design. The second part of the article focuses on plant-derived disulfide-rich cyclic peptides, known as cyclotides, and includes an analysis of the geographical distribution of Australasian plant species that contain cyclotides as well as an analysis of the diversity of cyclotide sequences found in Australasian plants. This should provide a useful resource for researchers to access native cyclotides and explore their chemistry and biology.
Collapse
|
4
|
Abstract
INTRODUCTION Conotoxins are a large family of bioactive peptides derived from cone snail venom. They target specific classes of ion channels and other membrane proteins and may have therapeutic value, primarily in the management of pain. AREAS COVERED The authors surveyed the US patent literature covering conotoxins, and their potential therapeutic applications. They describe the various subclasses of conotoxins that are the subject of current patent applications and their therapeutic indications. Limitations that may preclude broader application of these molecules are discussed and strategies for overcoming these limitations are presented. EXPERT OPINION Despite more than 25 years of intense global conotoxin research, only one molecule has successfully reached the market. Several other conotoxin-derived candidates failed in clinical trials, indicating that 'from the bench into the clinic' translation has been more difficult than originally anticipated. Nevertheless, we are optimistic that the potent activities of these molecules and the potential for improving their biopharmaceutical properties may lead to next-generation drug candidates with favorable pharmacological properties.
Collapse
Affiliation(s)
- Thomas Durek
- a The University of Queensland, Institute for Molecular Bioscience , Brisbane 4072, QLD, Australia
| | - David J Craik
- a The University of Queensland, Institute for Molecular Bioscience , Brisbane 4072, QLD, Australia
| |
Collapse
|
5
|
Chhabra S, Belgi A, Bartels P, van Lierop BJ, Robinson SD, Kompella SN, Hung A, Callaghan BP, Adams DJ, Robinson AJ, Norton RS. Dicarba analogues of α-conotoxin RgIA. Structure, stability, and activity at potential pain targets. J Med Chem 2014; 57:9933-44. [PMID: 25393758 DOI: 10.1021/jm501126u] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
α-Conotoxin RgIA is both an antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype and an inhibitor of high-voltage-activated N-type calcium channel currents. RgIA has therapeutic potential for the treatment of pain, but reduction of the disulfide bond framework under physiological conditions represents a potential liability for clinical applications. We synthesized four RgIA analogues that replaced native disulfide pairs with nonreducible dicarba bridges. Solution structures were determined by NMR, activity assessed against biological targets, and stability evaluated in human serum. [3,12]-Dicarba analogues retained inhibition of ACh-evoked currents at α9α10 nAChRs but not N-type calcium channel currents, whereas [2,8]-dicarba analogues displayed the opposite pattern of selectivity. The [2,8]-dicarba RgIA analogues were effective in HEK293 cells stably expressing human Cav2.2 channels and transfected with human GABAB receptors. The analogues also exhibited improved serum stability over the native peptide. These selectively acting dicarba analogues may represent mechanistic probes to explore analgesia-related biological receptors.
Collapse
Affiliation(s)
- Sandeep Chhabra
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville 3052, Victoria Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|