1
|
Liu L, Li X, Zhao Q, Yang L, Jiang X. Pathogenesis of Port-Wine Stains: Directions for Future Therapies. Int J Mol Sci 2022; 23:ijms232012139. [PMID: 36292993 PMCID: PMC9603382 DOI: 10.3390/ijms232012139] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
Abstract
Port-wine stains (PWSs) are congenital vascular malformations that involve the skin and mucosa. To date, the mechanisms underlying the pathogenesis and progression of PWSs are yet to be clearly elucidated. The potential reasons for dilated vessels are as follows: (1) somatic GNAQ (R183Q) mutations that form enlarged capillary malformation-like vessels through angiopoietin-2, (2) decreased perivascular nerve elements, (3) the coexistence of Eph receptor B1 and ephrin B2, and (4) the deficiency of αSMA expression in pericytes. In addition, ERK, c-JNK, P70S6K, AKT, PI3K, and PKC are assumed to be involved in PWS development. Although pulsed-dye laser (PDL) remains the gold standard for treating PWSs, the recurrence rate is high. Topical drugs, including imiquimod, axitinib, and rapamycin, combined with PDL treatments, are expected to alter the recurrence rate and reduce the number of PDL sessions for PWSs. For the deep vascular plexus, photosensitizers or photothermal transduction agents encapsulated by nanocarriers conjugated to surface markers (CD133/CD166/VEGFR-2) possess a promising therapeutic potential in photodynamic therapy or photothermal therapy for PWSs. The pathogenesis, progression, and treatment of PWSs should be extensively investigated.
Collapse
Affiliation(s)
- Lian Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610017, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610017, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610017, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610017, China
| | - Qian Zhao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610017, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610017, China
- Department of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu 610056, China
| | - Lihua Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610017, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610017, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610017, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: ; Tel.: +86-028-8542-3315; Fax: +86-028-8542-2560
| |
Collapse
|
2
|
Incerti M, Russo S, Corrado M, Giorgio C, Ballabeni V, Chiodelli P, Rusnati M, Scalvini L, Callegari D, Castelli R, Vacondio F, Ferlenghi F, Tognolini M, Lodola A. Optimization of EphA2 antagonists based on a lithocholic acid core led to the identification of UniPR505, a new 3α-carbamoyloxy derivative with antiangiogenetic properties. Eur J Med Chem 2020; 189:112083. [PMID: 32000051 DOI: 10.1016/j.ejmech.2020.112083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 11/24/2022]
Abstract
The EphA2 receptor has been validated in animal models as new target for treating tumors depending on angiogenesis and vasculogenic mimicry. In the present work, we extended our current knowledge on structure-activity relationship (SAR) data of two related classes of antagonists of the EphA2 receptor, namely 5β-cholan-24-oic acids and 5β-cholan-24-oyl l-β-homotryptophan conjugates, with the aim to develop new antiangiogenic compounds able to efficiently prevent the formation of blood vessels. As a result of our exploration, we identified UniPR505, N-[3α-(Ethylcarbamoyl)oxy-5β-cholan-24-oyl]-l-β-homo-tryptophan (compound 14), as a submicromolar antagonist of the EphA2 receptor capable to block EphA2 phosphorylation and to inhibit neovascularization in a chorioallantoic membrane (CAM) assay.
Collapse
Affiliation(s)
- Matteo Incerti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Simonetta Russo
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Miriam Corrado
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Carmine Giorgio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Vigilio Ballabeni
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Laura Scalvini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | - Riccardo Castelli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | | | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy.
| |
Collapse
|
3
|
Incerti M, Russo S, Callegari D, Pala D, Giorgio C, Zanotti I, Barocelli E, Vicini P, Vacondio F, Rivara S, Castelli R, Tognolini M, Lodola A. Metadynamics for Perspective Drug Design: Computationally Driven Synthesis of New Protein-Protein Interaction Inhibitors Targeting the EphA2 Receptor. J Med Chem 2017; 60:787-796. [PMID: 28005388 DOI: 10.1021/acs.jmedchem.6b01642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metadynamics (META-D) is emerging as a powerful method for the computation of the multidimensional free-energy surface (FES) describing the protein-ligand binding process. Herein, the FES of unbinding of the antagonist N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan (UniPR129) from its EphA2 receptor was reconstructed by META-D simulations. The characterization of the free-energy minima identified on this FES proposes a binding mode fully consistent with previously reported and new structure-activity relationship data. To validate this binding mode, new N-(3α-hydroxy-5β-cholan-24-oyl)-l-β-homotryptophan derivatives were designed, synthesized, and tested for their ability to displace ephrin-A1 from the EphA2 receptor. Among them, two antagonists, namely compounds 21 and 22, displayed high affinity versus the EphA2 receptor and resulted endowed with better physicochemical and pharmacokinetic properties than the parent compound. These findings highlight the importance of free-energy calculations in drug design, confirming that META-D simulations can be used to successfully design novel bioactive compounds.
Collapse
Affiliation(s)
- Matteo Incerti
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Simonetta Russo
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Donatella Callegari
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Zanotti
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Elisabetta Barocelli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Paola Vicini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Riccardo Castelli
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Massimiliano Tognolini
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma , Parco Area delle Scienze 27/A, 43124 Parma, Italy.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University , Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
4
|
Dong J, Zhao H, Zhou T, Spiliotopoulos D, Rajendran C, Li XD, Huang D, Caflisch A. Structural Analysis of the Binding of Type I, I1/2, and II Inhibitors to Eph Tyrosine Kinases. ACS Med Chem Lett 2015; 6:79-83. [PMID: 25589935 DOI: 10.1021/ml500355x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/29/2014] [Indexed: 11/29/2022] Open
Abstract
We have solved the crystal structures of the EphA3 tyrosine kinase in complex with nine small-molecule inhibitors, which represent five different chemotypes and three main binding modes, i.e., types I and I1/2 (DFG in) and type II (DFG out). The three structures with type I1/2 inhibitors show that the higher affinity with respect to type I is due to an additional polar group (hydroxyl or pyrazole ring of indazole) which is fully buried and is involved in the same hydrogen bonds as the (urea or amide) linker of the type II inhibitors. Overall, the type I and type II binding modes belong to the lock-and-key and induced fit mechanism, respectively. In the type II binding, the scaffold in contact with the hinge region influences the position of the Phe765 side chain of the DFG motif and the orientation of the Gly-rich loop. The binding mode of Birb796 in the EphA3 kinase does not involve any hydrogen bond with the hinge region, which is different from the Birb796/p38 MAP kinase complex. Our structural analysis emphasizes the importance of accounting for structural plasticity of the ATP binding site in the design of type II inhibitors of tyrosine kinases.
Collapse
Affiliation(s)
- Jing Dong
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hongtao Zhao
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ting Zhou
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Dimitrios Spiliotopoulos
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chitra Rajendran
- Laboratory
of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Xiao-Dan Li
- Laboratory
of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Danzhi Huang
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|