1
|
Sundar S, Madhukar P, Kumar R. Anti-leishmanial therapies: overcoming current challenges with emerging therapies. Expert Rev Anti Infect Ther 2025; 23:159-180. [PMID: 39644325 DOI: 10.1080/14787210.2024.2438627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Leishmaniasis, including visceral, cutaneous, and mucocutaneous forms, present a major health challenge in tropical regions. Current antileishmanial medications has significant limitations, creating a critical need for novel therapies that are safe and cost-effective with a shorter duration of treatment. AREAS COVERED This review explores the critical aspects of existing antileishmanial therapy and targets for future therapeutic developments. It emphasizes the need for new treatment options due to drug resistance, low success rates, toxicity, and high prices associated with current medications. The different forms of leishmaniasis, their clinical manifestations, the challenges associated with their treatment and emerging treatment options are explored in detail. EXPERT OPINION The first anti-leishmanial drug pentavalent antimony (SbV) was invented more than 100 years back. Since then, this compound has been used for all forms of leishmaniasis worldwide. For more than 70-80 years after discovery of SbV, no new antileishmanial drugs were developed, reflecting the lack of interest from academia or pharma industry. All three new treatments (Amphotericin-B, paromomycin and miltefosine) which underwent the clinical trials were repurposed drugs. The current pipeline for antileishmanial drugs is empty, with LXE 408 being the only potential drug reaching phase II clinical trial.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Prasoon Madhukar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Mazire PH, Saha B, Roy A. Immunotherapy for visceral leishmaniasis: A trapeze of balancing counteractive forces. Int Immunopharmacol 2022; 110:108969. [PMID: 35738089 DOI: 10.1016/j.intimp.2022.108969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
The protozoan parasite Leishmania donovani, residing and replicating within the cells of the monocyte-macrophage (mono-mac) lineage, causes visceral leishmaniasis (VL) in humans. While, Leishmania infantum, is the main causative agent for zoonotic VL, where dogs are the main reservoirs of the disease. The chemotherapy is a serious problem because of restricted repertoire of drugs, drug-resistant parasites, drug-toxicity and the requirement for parenteral administration, which is a problem in resource-starved countries. Moreover, immunocompromised individuals, particularly HIV-1 infected are at higher risk of VL due to impairment in T-helper cell and regulatory cell responses. Furthermore, HIV-VL co-infected patients report poor response to conventional chemotherapy. Recent efforts are therefore directed towards devising both prophylactic and therapeutic immunomodulation. As far as prophylaxis is concerned, although canine vaccines for the disease caused by Leishmania infantum or Leishmania chagasi are available, no vaccine is available for use in humans till date. Therefore, anti-leishmanial immunotherapy triggering or manipulating the host's immune response is gaining momentum during the last two decades. Immunomodulators comprised of small molecules, anti-leishmanial peptides, complex ligands for host receptors, cytokines or their agonists and antibodies have been given trials both in experimental models and in humans. However, the success of immunotherapy in humans remains a far-off target. We, therefore, propose that devising a successful immunotherapy is an act of balancing enhanced beneficial Leishmania-specific responses and deleterious immune activation/hyperinflammation just as the swings in a trapeze.
Collapse
Affiliation(s)
- Priyanka H Mazire
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind Road, Pune 411007, India
| | - Amit Roy
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
3
|
Deng B, Ma B, Ma Y, Cao P, Leng X, Huang P, Zhao Y, Ji T, Lu X, Liu L. Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. J Nanobiotechnology 2022; 20:140. [PMID: 35303868 PMCID: PMC8932194 DOI: 10.1186/s12951-022-01353-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/04/2022] [Indexed: 01/01/2023] Open
Abstract
Chemotherapeutics that can trigger immunogenic cell death (ICD) and release tumor-specific antigens are effective on treating a variety of cancers. The codelivery of chemotherapeutics with adjuvants is a promising strategy to achieve synergistic therapeutic effect. However, low drug loading and complicated preparation of current delivery systems lead to carrier-associated toxicity and immunogenicity. Herein, we developed a facile approach to construct liposomal spherical nucleic acids (SNA) by the self-assembly of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)-doxorubicin conjugate and DOPE-matrix metalloproteinases-9 (MMP-9) responsive peptide-CpG conjugate (DOPE-MMP-CpG). Liposomal SNAs efficiently co-delivered DOX and CpG into tumors and released the two drugs upon biological stimuli of MMP-9 enzyme in tumor microenvironment (TME) and high concentration of endogenous glutathione in tumor cells. We demonstrated that liposomal SNA enhanced activation of dendritic cells (DCs), promoted expansion of CD8+ and CD4+ T cells in both tumors and spleen, inhibited tumor growth, and extended animal survival. This work provided a simple strategy of delivering chemotherapeutics and adjuvants to tumors with synergistic therapeutic effect and reduced side effect.
Collapse
Affiliation(s)
- Bo Deng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Bing Ma
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yingying Ma
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Pei Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yuanyuan Zhao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, No. 2, 1st North Street, Zhongguancun, Beijing, 100190, People's Republic of China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xueguang Lu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, No. 2, 1st North Street, Zhongguancun, Beijing, 100190, People's Republic of China.
| | - Lanxia Liu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
4
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Kammona O, Tsanaktsidou E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int J Pharm 2021; 605:120761. [PMID: 34081999 DOI: 10.1016/j.ijpharm.2021.120761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis is a prevalent parasitic infection belonging to neglected tropical diseases. It is caused by Leishmania protozoan parasites transmitted by sandflies and it is responsible for increased morbidity/mortality especially in low- and middle-income countries. The lack of cheap, portable, easy to use diagnostic tools exhibiting high efficiency and specificity impede the early diagnosis of the disease. Furthermore, the typical anti-leishmanial agents are cytotoxic, characterized by low patient compliance and require long-term regimen and usually hospitalization. In addition, due to the intracellular nature of the disease, the existing treatments exhibit low bioavailability resulting in low therapeutic efficacy. The above, combined with the common development of resistance against the anti-leishmanial agents, denote the urgent need for novel therapeutic strategies. Furthermore, the lack of effective prophylactic vaccines hinders the control of the disease. The development of nanoparticle-based biosensors and nanocarrier-aided treatment and vaccination strategies could advance the diagnosis, therapy and prevention of leishmaniasis. The present review intends to highlight the various nanotechnology-based approaches pursued until now to improve the detection of Leishmania species in biological samples, decrease the side effects and increase the efficacy of anti-leishmanial drugs, and induce enhanced immune responses, specifically focusing on the outcome of their preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece.
| | - Evgenia Tsanaktsidou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
6
|
Immunotherapy in treatment of leishmaniasis. Immunol Lett 2021; 233:80-86. [PMID: 33771555 DOI: 10.1016/j.imlet.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022]
Abstract
Leishmaniasis caused by various species of protozoan transmitted by sand fly vectors occurs as a spectrum of clinical features including cutaneous, mucocutaneous and visceral forms. It is a geographically distributed parasitic disease and a major public health problem in the world. The clinical syndromes are highly variable depending on the parasite species, host genetics, vectors and environment. To date, there is no effective vaccine and traditional treatments are toxic, expensive with long administration duration and many adverse side effects and/or drug resistance. Instead of treatments based on chemotherapy, certain strategies aim to recover leishmaniasis and reduce the parasitic burden. Immunotherapy has focused on the induction of effective immune response to rapidly control the disease. Recent studies have indicated that a single dose of a suitable therapeutic vaccine induces a quick and lasting recovery in patients. Immunotherapy reduces the toxicity of drug and the emergence of resistance dramatically. It could be an effective addition to chemotherapy with a safe and potent drug compared with monotherapy, resulting in a prophylactic and therapeutic cure of leishmaniasis. This review has focused on treatment of leishmaniasis with particular emphasis on immunotherapy as an alternative to conventional drug treatment.
Collapse
|
7
|
Ji Z, Tan Z, Li M, Tao J, Guan E, Du J, Hu Y. Multi-functional nanocomplex codelivery of Trp2 and R837 to activate melanoma-specific immunity. Int J Pharm 2020; 582:119310. [DOI: 10.1016/j.ijpharm.2020.119310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 01/08/2023]
|
8
|
Romanelli MM, da Costa-Silva TA, Cunha-Junior E, Dias Ferreira D, Guerra JM, Galisteo AJ, Pinto EG, Barbosa LRS, Torres-Santos EC, Tempone AG. Sertraline Delivered in Phosphatidylserine Liposomes Is Effective in an Experimental Model of Visceral Leishmaniasis. Front Cell Infect Microbiol 2019; 9:353. [PMID: 31737574 PMCID: PMC6828611 DOI: 10.3389/fcimb.2019.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Liposomes containing phosphatidylserine (PS) has been used for the delivery of drugs into the intramacrophage milieu. Leishmania (L.) infantum parasites live inside macrophages and cause a fatal and neglected viscerotropic disease, with a toxic treatment. Sertraline was studied as a free formulation (SERT) and also entrapped into phosphatidylserine liposomes (LP-SERT) against intracellular amastigotes and in a murine model of visceral leishmaniasis. LP-SERT showed a potent activity against intracellular amastigotes with an EC50 value of 2.5 μM. The in vivo efficacy of SERT demonstrated a therapeutic failure. However, when entrapped into negatively charged liposomes (−58 mV) of 125 nm, it significantly reduced the parasite burden in the mice liver by 89% at 1 mg/kg, reducing the serum levels of the cytokine IL-6 and upregulating the levels of the chemokine MCP-1. Histopathological studies demonstrated the presence of an inflammatory infiltrate with the development of granulomas in the liver, suggesting the resolution of the infection in the treated group. Delivery studies showed fluorescent-labeled LP-SERT in the liver and spleen of mice even after 48 h of administration. This study demonstrates the efficacy of PS liposomes containing sertraline in experimental VL. Considering the urgent need for VL treatments, the repurposing approach of SERT could be a promising alternative.
Collapse
Affiliation(s)
| | | | - Edezio Cunha-Junior
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | | | | - Andres Jimenez Galisteo
- Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, Cidade Universitária, São Paulo, Brazil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Pavilhão Leonidas Deane, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, Brazil
| | | |
Collapse
|
9
|
Esfandiari F, Motazedian M, Asgari Q, Morowvat M, Molaei M, Heli H. Paromomycin-loaded mannosylated chitosan nanoparticles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop 2019; 197:105045. [PMID: 31158341 DOI: 10.1016/j.actatropica.2019.105045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis caused by different species of Leishmania parasites. The emergence of resistance, toxicity, long term treatment, high cost of the current drugs, and intracellular nature of the parasite are the major difficulties for the treatment of leishmaniasis. Although the therapeutic effect of paromomycin (PM) on leishmaniasisLeishmania parasite). PM-loaded into mannosylated CS (MCS) nanoparticles using dextran (PM-MCS-dex-NPs) was prepared by ionic gelation and then characterized. The particle size and Zeta potential of PM-MCS-dex-NPs were obtained as 246 nm and + 31 mV, respectively. Mannosylation of CS was qualitatively evaluated by Fourier-transform infrared spectroscopy and quantitatively measured by CHNO elemental analysis; also, a mannosylation level of 17% (w) was attained. Encapsulation efficiency (EE), drug release profile, and THP-1 cell uptake potential were determined. A value of 83.5% for EE and a higher release rate in acidic media were achieved. THP-1 cell uptake level of PM-MCS-dex-NPs after 6 h was ˜2.8 and ˜3.9 times of non-mannosylated CS nanoparticles (PM-CS-dexIn vitroGlucantim, PM-CS-dex-NPs, and PM-MCS-dex-NPs after 48 h were obtained as 1846 ± 158, 1234 ± 93, 784 ± 52 and 2714 ± 126 μg mL-1Glucantim, PM-CS-dex-NPs, and PM-MCS-dex-NPs after 48 h were obtained as 105.0 ± 14.0, 169.5 ± 9.8, 65.8 ± 7.3 and 17.8 ± 1.0 μg mL-1Glucantim, PM-CS-dex-NPs and PM-MCS-dexGlucantim, PM-CS-dex-NPs, and PM-MCS-dex-NPs at a typical concentration of 20 μg mL-1 were 71.78, 69.94, 83.14 and 33.41%, respectively. While the effect of PM-CS-dex-NPs was more salient on amastigotes, PM-MCS-dex-NPs effectively affected both stages of the parasite, especially the amastigote one. This indicated that the mannosylated formulation acts as a targeted delivery system. The findings of this study revealed that this novel targeted formulation represented a strong anti-leishmanial activity.
Collapse
|
10
|
Esfandiari F, Motazedian M, Asgari Q, Morowvat M, Molaei M, Heli H. Paromomycin-loaded mannosylated chitosan nanoparticles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop 2019; 197:105072. [PMID: 31300160 DOI: 10.1016/j.actatropica.2019.105072] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cutaneous leishmaniasis is the most common form of leishmaniasis caused by different species of Leishmania parasites. The emergence of resistance, toxicity, long term treatment, high cost of the current drugs, and intracellular nature of the parasite are the major difficulties for the treatment of leishmaniasis. Although the therapeutic effect of paromomycin (PM) on leishmaniasis has been investigated in different studies, it has a low oral absorption and short half-life, leading to a decreased drug efficacy. Therefore, new and targeted carriers with no such problems are needed. In the present study, PM was loaded into chitosan (CS) nanoparticles accompanied by targeting to macrophages (as the host of Leishmania parasite). PM-loaded into mannosylated CS (MCS) nanoparticles using dextran (PM-MCS-dex-NPs) was prepared by ionic gelation and then characterized. The particle size and zeta potential of PM-MCS-dex-NPs were obtained as 246 nm and +31 mV, respectively. Mannosylation of CS was qualitatively evaluated by Fourier-transform infrared spectroscopy and quantitatively measured by CHNO elemental analysis; also, a mannosylation level of 17% (w) was attained. Encapsulation efficiency (EE), drug release profile, and THP-1 cell uptake potential were determined. A value of 83.5% for EE and a higher release rate in acidic media were achieved. THP-1 cell uptake level of PM-MCS-dex-NPs after 6 h was ˜2.8 and ˜3.9 times of non-mannosylated CS nanoparticles (PM-CS-dex-NPs) and PM aqueous solution, respectively. In vitro cell cytotoxicity and promastigote and amastigote viabilities were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Half-maximal inhibitory concentration values toward the THP-1 cells for PM aqueous solution, Glucantim, PM-CS-dex-NPs, and PM-MCS-dex-NPs after 48 h were obtained as 1846 ± 158, 1234 ± 93, 784 ± 52 and 2714 ± 126 μg mL-1, respectively. Half-maximal inhibitory concentration values toward the promastigotes for PM aqueous solution, Glucantim, PM-CS-dex-NPs, and PM-MCS-dex-NPs after 48 h were obtained as 105.0 ± 14.0, 169.5 ± 9.8, 65.8 ± 7.3 and 17.8 ± 1.0 μg mL-1, respectively. Selectivity (therapeutic) indices for PM aqueous solution, Glucantim, PM-CS-dex-NPs and PM-MCS-dex-NPs after 48 h were obtained as 24.6, 17.5, 3.7 and 214, respectively. The parasite burden in THP-1 cells after 48 h treatment with PM aqueous solution, Glucantim, PM-CS-dex-NPs, and PM-MCS-dex-NPs at a typical concentration of 20 μg mL-1 were 71.78, 69.94, 83.14 and 33.41%, respectively. While the effect of PM-CS-dex-NPs was more salient on amastigotes, PM-MCS-dex-NPs effectively affected both stages of the parasite, especially the amastigote one. This indicated that the mannosylated formulation acts as a targeted delivery system. The findings of this study revealed that this novel targeted formulation represented a strong anti-leishmanial activity.
Collapse
|
11
|
Araújo RS, Garcia GM, Vilela JMC, Andrade MS, Oliveira LAM, Kano EK, Lange CC, Brito MAVPE, Brandão HDM, Mosqueira VCF. Cloxacillin benzathine-loaded polymeric nanocapsules: Physicochemical characterization, cell uptake, and intramammary antimicrobial effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110006. [PMID: 31499941 DOI: 10.1016/j.msec.2019.110006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/30/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
The present work shows the development and evaluation of the veterinary antibiotic cloxacillin benzathine (CLOXB) loaded into poly-ε-caprolactone (PCL) nanocapsules (NC), as a potential new treatment strategy to manage bovine intramammary infections, such as mastitis. Staphylococcus aureus-induced mastitis is often a recurrent disease due to the persistence of bacteria within infected cells. CLOXB-PCL NC were prepared by interfacial deposition of preformed biodegradable polymer followed by solvent displacement method. The mean diameter of NC varied from 241 to 428 nm and from 326 to 375 nm, when determined by dynamic light scattering and by atomic force microscopy, respectively. The zeta potential of NC was negative and varied from -28 to -51 mV. In vitro release studies from the NC were performed in two media under sink conditions: PBS with 1% polyethylene glycol or milk. A reversed-phase HPLC method was developed to determine the NC entrapment efficiency and kinetics of CLOXB release from the NC. Free CLOXB dissolution occurred very fast in both media, while drug release from the NC was slower and incomplete (below 50%) after 9 h. CLOXB release kinetics from polymeric NC was fitted with the Korsmeyer-Peppas model indicating that CLOXB release is governed by diffusion following Fick's law. The fluorescence confocal microscopy images of macrophage-like J774A.1 cells reveal NC uptake and internalization in vitro. In addition, antimicrobial effect of the intramammary administration of CLOXB-PCL NC in cows with mastitis resulted in no clinical signs of toxicity and allowed complete pathogen elimination after treatment. The in vivo results obtained in this work suggest that CLOXB-PCL NC could be a promising formulation for the treatment of intramammary infections in cattle, considering their physicochemical properties, release profiles and effects on bovine mastitis control.
Collapse
Affiliation(s)
- Raquel Silva Araújo
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil.
| | - Giani Martins Garcia
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil
| | | | | | | | - Eunice Kazue Kano
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil.
| | - Carla Christine Lange
- Embrapa Gado de Leite, Rua Eugênio do Nascimento, 610 Dom Bosco, Juiz de Fora, MG 36038-330, Brazil.
| | | | - Humberto de Mello Brandão
- Embrapa Gado de Leite, Rua Eugênio do Nascimento, 610 Dom Bosco, Juiz de Fora, MG 36038-330, Brazil.
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanobiotechnology (LDGNano), School of Pharmacy, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Minas Gerais 35400-000, Brazil.
| |
Collapse
|
12
|
Singh PK, Pawar VK, Jaiswal AK, Singh Y, Srikanth CH, Chaurasia M, Bora HK, Raval K, Meher JG, Gayen JR, Dube A, Chourasia MK. Chitosan coated PluronicF127 micelles for effective delivery of Amphotericin B in experimental visceral leishmaniasis. Int J Biol Macromol 2017; 105:1220-1231. [DOI: 10.1016/j.ijbiomac.2017.07.161] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022]
|
13
|
Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, Apostolov A, Markova T, Yoncheva K. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 2017; 103:771-782. [DOI: 10.1016/j.ijbiomac.2017.05.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 05/13/2017] [Indexed: 01/05/2023]
|
14
|
Bruni N, Stella B, Giraudo L, Della Pepa C, Gastaldi D, Dosio F. Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomedicine 2017; 12:5289-5311. [PMID: 28794624 PMCID: PMC5536235 DOI: 10.2147/ijn.s140363] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leishmaniasis is a vector-borne zoonotic disease caused by protozoan parasites of the genus Leishmania, which are responsible for numerous clinical manifestations, such as cutaneous, visceral, and mucocutaneous leishmaniasis, depending on the site of infection for particular species. These complexities threaten 350 million people in 98 countries worldwide. Amastigotes living within macrophage phagolysosomes are the principal target of antileishmanial treatment, but these are not an easy target as drugs must overcome major structural barriers. Furthermore, limitations on current therapy are related to efficacy, toxicity, and cost, as well as the length of treatment, which can increase parasitic resistance. Nanotechnology has emerged as an attractive alternative as conventional drugs delivered by nanosized carriers have improved bioavailability and reduced toxicity, together with other characteristics that help to relieve the burden of this disease. The significance of using colloidal carriers loaded with active agents derives from the physiological uptake route of intravenous administered nanosystems (the phagocyte system). Nanosystems are thus able to promote a high drug concentration in intracellular mononuclear phagocyte system (MPS)-infected cells. Moreover, the versatility of nanometric drug delivery systems for the deliberate transport of a range of molecules plays a pivotal role in the design of therapeutic strategies against leishmaniasis. This review discusses studies on nanocarriers that have greatly contributed to improving the efficacy of antileishmaniasis drugs, presenting a critical review and some suggestions for improving drug delivery.
Collapse
Affiliation(s)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Carlo Della Pepa
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Gutierrez-Corbo C, Dominguez-Asenjo B, Vossen LI, Pérez-Pertejo Y, Muñoz-Fenández MA, Balaña-Fouce R, Calderón M, Reguera RM. PEGylated Dendritic Polyglycerol Conjugate Delivers Doxorubicin to the Parasitophorous Vacuole in Leishmania infantum
Infections. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Camino Gutierrez-Corbo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
- Laboratorio de InmunoBiologia Molecular; Hospital General Universitario Gregorio Marañon; Spanish HIV HGM BioBank; IiSGM and CIBER-BBN; 28007 Madrid Spain
| | - Barbara Dominguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| | - Laura I. Vossen
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| | - Maria A. Muñoz-Fenández
- Laboratorio de InmunoBiologia Molecular; Hospital General Universitario Gregorio Marañon; Spanish HIV HGM BioBank; IiSGM and CIBER-BBN; 28007 Madrid Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| | - Marcelo Calderón
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| |
Collapse
|
16
|
Singh PK, Sah P, Meher JG, Joshi S, Pawar VK, Raval K, Singh Y, Sharma K, Kumar A, Dube A, Chourasia MK. Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Adv 2016. [DOI: 10.1039/c6ra06007b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel chitosan-coated nanoparticles with a high payload of amphotericin B (AmB) and doxorubicin (Dox) were formulated employing a nanoprecipitation technique and evaluated for antileishmanial activity against Leishmania donovani.
Collapse
|
17
|
Gupta PK, Jaiswal AK, Asthana S, Verma A, Kumar V, Shukla P, Dwivedi P, Dube A, Mishra PR. Self Assembled Ionically Sodium Alginate Cross-Linked Amphotericin B Encapsulated Glycol Chitosan Stearate Nanoparticles: Applicability in Better Chemotherapy and Non-Toxic Delivery in Visceral Leishmaniasis. Pharm Res 2014; 32:1727-40. [DOI: 10.1007/s11095-014-1571-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/10/2014] [Indexed: 01/09/2023]
|