1
|
Krishna B. Inhaled Anesthetics for Sedation in ICU: Widening Horizons! Indian J Crit Care Med 2022; 26:889-891. [PMID: 36042759 PMCID: PMC9363807 DOI: 10.5005/jp-journals-10071-24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
How to cite this article: Krishna B. Inhaled Anesthetics for Sedation in ICU: Widening Horizons! Indian J Crit Care Med 2022;26(8):889-891.
Collapse
Affiliation(s)
- Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
Abstract
Perioperative cardioprotection aims to minimize the consequences of myocardial ischemia-reperfusion injury. In isolated tissue and animal experiments, several treatments have been identified providing cardioprotection. Some of these strategies have been confirmed in clinical proof-of-concept studies. However, the final translation of cardioprotective strategies to really improve clinical outcome has been disappointing: large randomized controlled clinical trials mostly revealed inconclusive, neutral, or negative results. This review provides an overview of the currently available evidence regarding clinical implications of perioperative cardioprotective therapies from an anesthesiological perspective, highlighting nonpharmacological as well as pharmacological strategies. We discuss reasons why translation of promising experimental results into clinical practice and outcome improvement is hampered by potential confounders and suggest future perspectives to overcome these limitations.
Collapse
|
3
|
Beverstock J, Park T, Alston RP, Song CCA, Claxton A, Sharkey T, Hutton S, Fathers J, Cawley W. A Comparison of Volatile Anesthesia and Total Intravenous Anesthesia (TIVA) Effects on Outcome From Cardiac Surgery: A Systematic Review and Meta-Analysis. J Cardiothorac Vasc Anesth 2020; 35:1096-1105. [PMID: 33191042 DOI: 10.1053/j.jvca.2020.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The primary objective of this study was to compare one-year mortality in patients undergoing cardiac surgery with volatile anesthesia or total intravenous anesthesia (TIVA). Secondary objectives were to compare in-hospital and 30-day mortality, postoperative levels of creatine kinase (CK-MB) and cardiac troponin, and durations of tracheal intubation, intensive care unit (ICU) and hospital stays. DESIGN Systematic review and meta-analysis of randomized controlled trials (RCTs). SETTING International, multi-institution centers. PARTICIPANTS Adults patients undergoing heart surgery. INTERVENTIONS Volatile anesthesia and TIVA. MEASUREMENTS AND MAIN RESULTS Meta-analysis found no statistically significant difference between patients receiving TIVA and volatile anesthesia in one-year mortality (n = 6440, OR = 1.22, 95% CI 0.97 to 1.54, p = 0.09, Z = 1.67, I2 = 0%), troponin (n = 3127, SMD = 0.26, 95% CI -0.01 to 0.52, p = 0.05, Z = 1.92, I2 = 90%) and CK-MB concentration 24h postoperatively (n = 1214, SMD = 0.10, 95% CI -0.17 to 0.36, unadjusted p = 0.48, Z = 0.71, I2 = 79%), or time to tracheal extubation (n = 1059, SMD = 0.10, 95% CI -0.28 to 0.49, p = 0.60, Z = 0.53, I2 = 88%). The durations of ICU stay (n = 2003, SMD = 0.29, 95% CI 0.01 to 0.57, p = 0.04, Z = 2.05, I2 = 88%) and hospital stay (n = 1214, SMD = 0.42, 95% CI 0.10 to 0.75, p = 0.01, Z = 2.53, I2 = 91%) were shorter in the volatile anesthetic compared to TIVA group. CONCLUSIONS No significant differences in mortality (in-hospital, 30-day, 1-year), troponin and CK-MB concentrations 24 h postoperatively, or time to tracheal extubation were found between patients who had volatile anesthesia or TIVA. Compared to TIVA, volatile anesthesia was associated with shorter durations of hospital and ICU stays.
Collapse
Affiliation(s)
- Jamie Beverstock
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Park
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - R Peter Alston
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom; Department of Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.
| | - Celine Chan Ah Song
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy Claxton
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas Sharkey
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah Hutton
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph Fathers
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Will Cawley
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
|
5
|
Abstract
In a series of articles dealing with hypnotics for induction of anesthesia, this article describes the development and current value of propofol. Its significance far exceeds that of a pure induction hypnotic (sedation in diagnostic and therapeutic procedures and on the intensive care unit). Propofol is also used for sedation in diagnostic and therapeutic procedures and on the intensive care unit. In the field of induction of anesthesia, the alternatives are barely used. Some contraindications are still controversial whereas others are no longer sufficiently anchored in the users' awareness (widespread off-label use). Adverse effects, such as injection pain, infection risk and propofol-related infusion syndrome (PRIS) could be significantly reduced by pharmacovigilance. With appropriate caution nearly the whole spectrum of anesthesiology patients can be treated using propofol. The hemodynamic side effects and the rare but potentially fatal PRIS are limitations. Further developments address the water solubility and the solubilizing agents of propofol.
Collapse
Affiliation(s)
- D Bolkenius
- Klinik für Anästhesiologie und Operative Intensivmedizin, Klinikum Augsburg, Stenglinstr. 2, 86156, Augsburg, Deutschland.
| | - C Dumps
- Klinik für Anästhesiologie und Operative Intensivmedizin, Klinikum Augsburg, Stenglinstr. 2, 86156, Augsburg, Deutschland
| | - E Halbeck
- Klinik für Anästhesiologie und Operative Intensivmedizin, Klinikum Augsburg, Stenglinstr. 2, 86156, Augsburg, Deutschland
| |
Collapse
|
6
|
Jerath A, Parotto M, Wasowicz M, Ferguson ND. Opportunity Knocks? The Expansion of Volatile Agent Use in New Clinical Settings. J Cardiothorac Vasc Anesth 2017; 32:1946-1954. [PMID: 29449155 DOI: 10.1053/j.jvca.2017.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Angela Jerath
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Matteo Parotto
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marcin Wasowicz
- Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Meiser A, Bomberg H, Lepper PM, Trudzinski FC, Volk T, Groesdonk HV. Inhaled Sedation in Patients With Acute Respiratory Distress Syndrome Undergoing Extracorporeal Membrane Oxygenation. Anesth Analg 2017; 125:1235-1239. [DOI: 10.1213/ane.0000000000001915] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Herzog-Niescery J, Seipp HM, Weber TP, Bellgardt M. Inhaled anesthetic agent sedation in the ICU and trace gas concentrations: a review. J Clin Monit Comput 2017; 32:667-675. [PMID: 28861655 DOI: 10.1007/s10877-017-0055-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
There is a growing interest in the use of volatile anesthetics for inhalational sedation of adult critically ill patients in the ICU. Its safety and efficacy has been demonstrated in various studies and technical equipment such as the anaesthetic conserving device (AnaConDa™; Sedana Medical, Uppsala, Sweden) or the MIRUS™ system (Pall Medical, Dreieich, Germany) have significantly simplified the application of volatile anesthetics in the ICU. However, the personnel's exposure to waste anesthetic gas during daily work is possibly disadvantageous, because there is still uncertainty about potential health risks. The fact that average threshold limit concentrations for isoflurane, sevoflurane and desflurane either differ significantly between countries or are not even defined at all, leads to raising concerns among ICU staff. In this review, benefits, risks, and technical aspects of inhalational sedation in the ICU are discussed. Further, the potential health effects of occupational long-term low-concentration agent exposure, the staffs' exposure levels in clinical practice, and strategies to minimize the individual gas exposure are reviewed.
Collapse
Affiliation(s)
- Jennifer Herzog-Niescery
- Department of Anesthesiology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany.
| | - Hans-Martin Seipp
- Department of Life Science Engineering, University of Applied Sciences, Wiesenstr. 14, 35390, Giessen, Germany
| | - Thomas Peter Weber
- Department of Anesthesiology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| | - Martin Bellgardt
- Department of Anesthesiology, Ruhr-University Bochum, St. Josef Hospital, Gudrunstraße 56, 44791, Bochum, Germany
| |
Collapse
|
9
|
Jerath A, Parotto M, Wasowicz M, Ferguson ND. Volatile Anesthetics. Is a New Player Emerging in Critical Care Sedation? Am J Respir Crit Care Med 2017; 193:1202-12. [PMID: 27002466 DOI: 10.1164/rccm.201512-2435cp] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Volatile anesthetic agent use in the intensive care unit, aided by technological advances, has become more accessible to critical care physicians. With increasing concern over adverse patient consequences associated with our current sedation practice, there is growing interest to find non-benzodiazepine-based alternative sedatives. Research has demonstrated that volatile-based sedation may provide superior awakening and extubation times in comparison with current intravenous sedation agents (propofol and benzodiazepines). Volatile agents may possess important end-organ protective properties mediated via cytoprotective and antiinflammatory mechanisms. However, like all sedatives, volatile agents are capable of deeply sedating patients, which can have respiratory depressant effects and reduce patient mobility. This review seeks to critically appraise current volatile use in critical care medicine including current research, technical consideration of their use, contraindications, areas of controversy, and proposed future research topics.
Collapse
Affiliation(s)
- Angela Jerath
- 1 Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Matteo Parotto
- 1 Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Marcin Wasowicz
- 1 Department of Anesthesia and Pain Medicine, Toronto General Hospital, Toronto, Ontario, Canada; and
| | - Niall D Ferguson
- 2 Interdepartmental Division of Critical Care Medicine, University of Toronto, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Freiermuth D, Mets B, Bolliger D, Reuthebuch O, Doebele T, Scholz M, Gregor M, Haschke M, Seeberger MD, Fassl J. Sevoflurane and Isoflurane—Pharmacokinetics, Hemodynamic Stability, and Cardioprotective Effects During Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth 2016; 30:1494-1501. [DOI: 10.1053/j.jvca.2016.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/11/2022]
|
11
|
Smit KF, Brevoord D, De Hert S, de Mol BA, Kerindongo RP, van Dieren S, Schlack WS, Hollmann MW, Weber NC, Preckel B. Effect of helium pre- or postconditioning on signal transduction kinases in patients undergoing coronary artery bypass graft surgery. J Transl Med 2016; 14:294. [PMID: 27737678 PMCID: PMC5064802 DOI: 10.1186/s12967-016-1045-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The noble gas helium induces pre- and postconditioning in animals and humans. Volatile anesthetics induce cardioprotection in humans undergoing coronary artery bypass graft (CABG) surgery. We hypothesized that helium induces pre- and postconditioning in CABG-patients, affecting signaling molecules protein kinase C-epsilon (PKC-ε), p38 mitogen activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK-1/2) and heat shock protein 27 (HSP-27) within cardiac tissue, and reducing postoperative troponin levels. METHODS After ethical approval and informed consent, 125 elective patients undergoing CABG surgery were randomised into this prospective, placebo controlled, investigator blinded, parallel arm single-centre study. Helium preconditioning (3 × 5 min of 70 % helium and 30 % oxygen) was applied before aortic cross clamping; postconditioning (15 min of helium) was applied before release of the aortic cross clamp. Signaling molecules were measured in right atrial appendix specimens. Troponin-T was measured at 4, 12, 24 and 48 h postoperatively. RESULTS Baseline characteristics of all groups were similar. Helium preconditioning did not significantly alter the primary outcome (molecular levels of kinases PKC-ε and HSP-27, ratio of activated p38 MAPK or ERK ½). Postoperative troponin T was 11 arbitrary units [5, 31; area-under-the-curve (interquartile range)] for controls, and no statistically significant changes were observed after helium preconditioning [He-pre: 11 (6, 18)], helium postconditioning [He-post: 11 (8, 15)], helium pre- and postconditioning [He-PP: 14 (6, 20)] and after sevoflurane preconditioning [APC: 12 (8, 24), p = 0.13]. No adverse effects related to study treatment were observed in this study. CONCLUSIONS No effect was observed of helium preconditioning, postconditioning or the combination thereof on activation of p38 MAPK, ERK 1/2 or levels of HSP27 and PKC-ε in the human heart. Helium pre- and postconditioning did not affect postoperative troponin release in patients undergoing CABG surgery. Clinical trial number Dutch trial register ( http://www.trialregister.nl/ ) number NTR1226.
Collapse
Affiliation(s)
- Kirsten F Smit
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Daniel Brevoord
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Stefan De Hert
- Department of Anesthesiology, Ghent University, Ghent, Belgium
| | - Bas A de Mol
- Department of Cardiothoracic Surgery, Academic Medical Centre (AMC), Amsterdam, The Netherlands
| | - Raphaela P Kerindongo
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Susan van Dieren
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Wolfgang S Schlack
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands.
| | - Benedikt Preckel
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Department of Anesthesiology, Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Jiang JJ, Li C, Li H, Zhang L, Lin ZH, Fu BJ, Zeng YM. Sevoflurane postconditioning affects post-ischaemic myocardial mitochondrial ATP-sensitive potassium channel function and apoptosis in ageing rats. Clin Exp Pharmacol Physiol 2016; 43:552-61. [PMID: 26924791 DOI: 10.1111/1440-1681.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Jing-Jing Jiang
- Department of Anaesthesiology; The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital; Qingyuan China
- Department of Anaesthesiology; Xuzhou Medical College; Xuzhou China
| | - Chao Li
- Department of Anaesthesiology; Xuzhou Medical College; Xuzhou China
| | - Heng Li
- Department of Anaesthesiology; The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital; Qingyuan China
- Department of Anaesthesiology; Xuzhou Medical College; Xuzhou China
| | - Lei Zhang
- Department of Anaesthesiology; The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital; Qingyuan China
| | - Zong-Hang Lin
- Department of Anaesthesiology; The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital; Qingyuan China
- Department of Anaesthesiology; Xuzhou Medical College; Xuzhou China
| | - Bao-Jun Fu
- Department of Anaesthesiology; The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital; Qingyuan China
| | - Yin-Ming Zeng
- Department of Anaesthesiology; The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital; Qingyuan China
| |
Collapse
|
13
|
Wong SSC, Irwin MG. Peri-operative cardiac protection for non-cardiac surgery. Anaesthesia 2016; 71 Suppl 1:29-39. [PMID: 26620144 DOI: 10.1111/anae.13305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 10/22/2022]
Abstract
Cardiovascular complications are an important cause of morbidity and mortality after non-cardiac surgery. Pre-operative identification of high-risk individuals and appropriate peri-operative management can reduce cardiovascular risk. It is important to continue chronic beta-blocker and statin therapy. Statins are relatively safe and peri-operative initiation may be beneficial in high-risk patients and those scheduled for vascular surgery. The pre-operative introduction of beta-blockers reduces myocardial injury but increases rates of stroke and mortality, possibly due to hypotension. They should only be considered in high-risk patients and the dose should be titrated to heart rate. Alpha-2 agonists may also contribute to hypotension. Aspirin continuation can increase the risk of major bleeding and offset the benefit of reduced myocardial risk. Contrary to the initial ENIGMA study, nitrous oxide does not seem to increase the risk of myocardial injury. Volatile anaesthetic agents and opioids have been shown to be cardioprotective in animal laboratory studies but these effects have, so far, not been conclusively reproduced clinically.
Collapse
Affiliation(s)
- S S C Wong
- Department of Anaesthesia, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - M G Irwin
- Department of Anaesthesia, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
14
|
Lemoine S, Tritapepe L, Hanouz JL, Puddu PE. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br J Anaesth 2016; 116:456-75. [PMID: 26794826 DOI: 10.1093/bja/aev451] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myocardial conditioning is actually an essential strategy in the management of ischaemia-reperfusion injury. The concept of anaesthetic post-conditioning is intriguing, its action occurring at a pivotal moment (that of reperfusion when ischaemia reperfusion lesions are initiated) where the activation of these cardio-protective mechanisms could overpower the mechanisms leading to ischaemia reperfusion injuries. Desflurane and sevoflurane are volatile anaesthetics frequently used during cardiac surgery. This review focuses on the efficacy of desflurane and sevoflurane administered during early reperfusion as a potential cardio-protective strategy. In the context of experimental studies in animal models and in human atrial tissues in vitro, the mechanisms underlying the cardio-protective effect of these agents and their capacity to induce post-conditioning have been reviewed in detail, underlining the role of reactive oxygen species generation, the activation of the cellular signalling pathways, and the actions on mitochondria along with the translatable actions in humans; this might well be sufficient to set the basis for launching randomized clinical studies, actually needed to confirm this strategy as one of real impact.
Collapse
Affiliation(s)
- S Lemoine
- Department of Anaesthesiology and Intensive Care, France and Faculty of Medicine, Centre Hospitalier Universitaire de Caen, Normandie Université, Pôle d'Anesthésie-Réanimation Chirurgicale - Niveau 6, CHU de Caen, Avenue Cote de Nacre, Caen Cedex 14033, France
| | - L Tritapepe
- Department of Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - J L Hanouz
- Department of Anaesthesiology and Intensive Care, France and Faculty of Medicine, Centre Hospitalier Universitaire de Caen, Normandie Université, Pôle d'Anesthésie-Réanimation Chirurgicale - Niveau 6, CHU de Caen, Avenue Cote de Nacre, Caen Cedex 14033, France
| | - P E Puddu
- Department of Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Weber NC. 'Conditioning the heart' - lessons we have learned from the past and future perspectives for new and old conditioning 'drugs'. Br J Pharmacol 2016; 172:1909-12. [PMID: 25824658 DOI: 10.1111/bph.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Conditioning the Heart - Pathways to Translation. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-8.
Collapse
Affiliation(s)
- Nina C Weber
- Department of Anaesthesiology, Laboratory of Experimental Intensive Care and Anaesthesiology (L.E.I.C.A) Academic Medical Centre (AMC), Meibergdreef 9, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|