1
|
Abdulhaniff P, Loganathan C, Sakayanathan P, Thayumanavan P. Lipoic acid-plumbagin conjugate protects pancreatic beta cells against high glucose-induced toxicity. Sci Rep 2025; 15:11061. [PMID: 40169622 PMCID: PMC11961592 DOI: 10.1038/s41598-025-93344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Pancreatic β cells that produce insulin play a significant role in maintaining glucose homeostasis. However, high glucose (HG) causes oxidative stress, which leads to pancreatic β cell dysfunction. The synthesis of lipoic acid (LA) and plumbagin (PLU) conjugate (LA-PLU) was done and characterized using (1H) NMR, (13C) NMR, LC-ESI-MS/MS, and UV-visible spectroscopy techniques. ADME analysis confirmed the drug-like properties of LA-PLU. The present study revealed the protective effect of LA-PLU conjugate against HG (25 mM)-induced oxidative stress on pancreatic β cells. Cell viability was performed on RIN-5F cells and found that LA-PLU exhibits non-toxic up to 91.23 ± 2.61% of cell viability at 12.5 µM concentration. At 12.5 µM, LA-PLU protected pancreatic β cells up to 73.45 ± 3.72% under HG conditions. LA-PLU showed a protective effect on RIN-5F cells against HG-induced DNA damage, followed by preserving mitochondrial membrane potential and decreasing reactive oxygen species formation. Further, LA-PLU showed an anti-apoptotic effect by increasing the Bcl-2 (B cell lymphoma-2) level and decreasing the apoptotic proteins [Bcl-2 associated x (Bax), and cleaved caspase-3). Hence, the overall study concludes that LA-PLU could act as a potent antioxidant that protects the RIN-5F cells under HG conditions, resulting in the maintenance of glucose homeostasis.
Collapse
Affiliation(s)
- Parveen Abdulhaniff
- Molecular Therapeutics Laboratory, Department of Biochemistry, Periyar University, Salem, Tamil Nadu, India
| | - Chitra Loganathan
- Bioinnov Solutions LLP, Research and Development Centre, Salem, Tamil Nadu, India
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical And Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | | | - Palvannan Thayumanavan
- Molecular Therapeutics Laboratory, Department of Biochemistry, Periyar University, Salem, Tamil Nadu, India.
| |
Collapse
|
2
|
Ningsih S, Kusumastuti SA, Nuralih N, Fajriawan AA, Permatasari D, Yunianto P, Ramadhan D, Wulandari MT, Firdausi N, Nurhadi N, Giarni R, Agustini K, Wibowo AE, Rosidah I, Rengganis TN, Ngatinem N, Subiantoro AH, Supriyono A. Andrographis paniculata (Burm. f.) Nees extract ameliorates insulin resistance in the insulin-resistant HepG2 cells via GLUT2/IRS-1 pathway. Arch Physiol Biochem 2024; 130:779-789. [PMID: 37878369 DOI: 10.1080/13813455.2023.2273221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Hyperglycaemia is one condition related to inflammation leading to insulin signalling impairment. This study was conducted to investigate the insulin sensitivity improvement of Sambiloto (Andrographis paniculata (Burm. f.)) Nees extract in insulin resistance-induced HepG2 (IR-HepG2) cells by stimulating insulin sensitivities and inhibiting inflammatory response. Sambiloto extract at 2 µg/mL revealed glucose uptake stimulation and up-regulating GLUT-2 and IRS-1 gene expression, and inhibited pro-inflammatory cytokine IL-6 gene expression in IR-HepG2 cells. Phytochemical analysis showed that the total phenolic level and andrografolide content of Sambiloto extract were 2.91 ± 0.04% and 1.95%, respectively. This result indicated that Sambiloto extract ameliorated insulin resistance in high glucose-induced IR-HepG2 cells via modulating the IRS-1/GLUT-2 pathway due to IL-6 inhibition. These findings suggested that Sambiloto extract had potency as an anti-inflammatory and insulin-resistance improvement in IR-HepG2 cells.
Collapse
Affiliation(s)
- Sri Ningsih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nuralih Nuralih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Adam Arditya Fajriawan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Devi Permatasari
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Prasetyawan Yunianto
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Mayriska Tri Wulandari
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nisrina Firdausi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Nurhadi Nurhadi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Reni Giarni
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Kurnia Agustini
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agung Eru Wibowo
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Idah Rosidah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Tiya Novlita Rengganis
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Ngatinem Ngatinem
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agus Himawan Subiantoro
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| | - Agus Supriyono
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN) Republic of Indonesia, LAPTIAB Building 610-614, Puspiptek Area, South Tangerang, Indonesia
| |
Collapse
|
3
|
Roy P, Tomassoni D, Martinelli I, Bellitto V, Nittari G, Amenta F, Tayebati SK. Protective effects of the R-(+)-thioctic acid treatment: possible anti-inflammatory activity on heart of hypertensive rats. BMC Complement Med Ther 2024; 24:281. [PMID: 39048980 PMCID: PMC11267948 DOI: 10.1186/s12906-024-04547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In cardiovascular disease, high blood pressure is associated with oxidative stress, promoting endothelial dysfunction, vascular remodeling, and inflammation. Clinical trials are discordant that the most effective treatment in the management of hypertension seems to be the administration of anti-hypertensive drugs with antioxidant properties. The study aims to evaluate the effects of the eutomer of thioctic acid on oxidative stress and inflammation in the heart of spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. METHODS To study the oxidative status, the malondialdehyde and 4-hydroxynonenal concentration, protein oxidation were measured in the heart. Morphological analysis were performed. Immunohistochemistry and Western blot were done for alpha-smooth muscle actin and transforming growth factor beta to assess fibrosis; cytokines and nuclear factor kappaB to assess inflammatory processes. RESULTS Spontaneously hypertensive rats were characterized by hypertension with increased malondialdehyde levels in the heart. OxyBlot in the heart of spontaneously hypertensive rats showed an increase in proteins' oxidative status. Cardiomyocyte hypertrophy and fibrosis in the ventricles were associated with an increased expression of alpha-smooth muscle actin and pro-inflammatory cytokines, reduced by the eutomer of thioctic acid supplementation. CONCLUSIONS Based on this evidence, eutomer of thioctic acid could represent an appropriate antioxidant molecule to reduce oxidative stress and prevent inflammatory processes on the cardiomyocytes and cardiac vascular endothelium.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, 62032, MC, Italy
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Vincenzo Bellitto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Giulio Nittari
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy.
| |
Collapse
|
4
|
Yu X. Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiol Ther 2023; 12:415-443. [PMID: 37247171 PMCID: PMC10423196 DOI: 10.1007/s40119-023-00319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 05/30/2023] Open
Abstract
Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.
Collapse
Affiliation(s)
- Xuejing Yu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75235, USA.
| |
Collapse
|
5
|
Souza LC, Andrade MK, Azevedo EM, Ramos DC, Bail EL, Vital MABF. Andrographolide Attenuates Short-Term Spatial and Recognition Memory Impairment and Neuroinflammation Induced by a Streptozotocin Rat Model of Alzheimer's Disease. Neurotox Res 2022; 40:1440-1454. [PMID: 36029454 DOI: 10.1007/s12640-022-00569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder clinically manifested by a gradual cognitive decline. Intracerebroventricular injection (ICV) of streptozotocin (STZ), a model of sporadic AD (sAD), shows many aspects of sAD abnormalities (i.e., neuroinflammation, oxidative stress, protein aggregation), resulting in memory impairment. Andrographolide (ANDRO), a natural diterpene lactone, has numerous bioactivities including anti-inflammatory and antioxidant properties. Studies in rodents revealed that ANDRO has neuroprotective properties and restores cognitive impairment. In the present study, we investigated the effects of ANDRO in the ICV-STZ model relative to short-term spatial memory (object location test (OLT) and Y maze test), short-term recognition memory (object recognition test (ORT)), locomotor activity (open field test (OFT)), expression of amyloid precursor protein (APP), and activation of astrocytes (glial fibrillary acidic protein (GFAP) expression) and microglia (ionized calcium-binding adapter molecule-1 (Iba-1) immunohistochemistry) in the prefrontal cortex (PFC) and hippocampus (HIP). Wistar rats were injected ICV with STZ (3 mg/kg) or vehicle and treated with ANDRO (2 mg/kg, i.p.; three times per week). After four weeks, ANDRO attenuated the impairments of the Y maze and ORT performances, and the increase of astrocyte activation in the PFC induced by the ICV-STZ model. In addition, ANDRO decreased the number of activated microglia cells in the HIP of STZ-injected rats. The APP expression was not altered, neither by the STZ nor ANDRO. ANDRO showed a beneficial effect on memory impairment and neuroinflammation in the STZ model of AD.
Collapse
Affiliation(s)
- Leonardo C Souza
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Marcos K Andrade
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Evellyn M Azevedo
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daniele C Ramos
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Ellen L Bail
- Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Synergistic antitumor effect of Andrographolide and cisplatin through ROS-mediated ER stress and STAT3 inhibition in colon cancer. Med Oncol 2022; 39:101. [DOI: 10.1007/s12032-022-01691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
|
7
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
8
|
Agrawal P, Nair MS. An insight into the pharmacological and analytical potential of Andrographolide. Fundam Clin Pharmacol 2022; 36:586-600. [PMID: 35001431 DOI: 10.1111/fcp.12757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Andrographis paniculata is an annual medicinal herb from the family Acanthaceae. Andrographolide is generally considered an essential bioactive component of plant A. paniculata. Since ancient times, it has been widely recognized for its therapeutic qualities and has attracted the scientific and medical communities' attention. This review summarizes the molecular, clinical, and in vitro research of compound andrographolide and its mechanism of action. Andrographolide, when combined with other enhancing agents, offers a wide variety of health benefits. The therapeutic potential of andrographolide has been exemplified and exhibited by directly regulating genes and indirectly interacting with small molecules and different enzymes. This review compiles and consolidates the pharmacological action of andrographolide and its analogs and deciphers the gaps that have hindered its use in medicinal research.
Collapse
Affiliation(s)
- Pallavi Agrawal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
9
|
Andrographolide Attenuates Established Pulmonary Hypertension via Rescue of Vascular Remodeling. Biomolecules 2021; 11:biom11121801. [PMID: 34944445 PMCID: PMC8699233 DOI: 10.3390/biom11121801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by vascular remodeling caused by marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Andrographolide (ANDRO) is a potent anti-inflammatory agent which possesses antioxidant, and has anticarcinogenic activity. The present study examined potential therapeutic effects of ANDRO on PH in both chronic hypoxia and Sugen5416/hypoxia mouse PH models. Effects of ANDRO were also studied in cultured human PASMCs isolated from either healthy donors or PH patients. In vivo, ANDRO decreased distal pulmonary arteries (PAs) remodeling, mean PA pressure and right ventricular hypertrophy in chronic hypoxia- and Sugen/hypoxia-induced PH in mice. ANDRO reduced cell viability, proliferation and migration, but increased cell apoptosis in the PASMCs isolated from PH patients. ANDRO also reversed the dysfunctional bone morphogenetic protein receptor type-2 (BMPR2) signaling, suppressed [Ca2+]i elevation, reactive oxygen species (ROS) generation, and the upregulated expression of IL-6 and IL-8, ET-1 and VEGF in PASMCs from PH patients. Moreover, ANDRO significantly attenuated the activation of TLR4/NF-κB, ERK- and JNK-MAPK signaling pathways and reversed the inhibition of p38-MAPK in PASMCs of PH patients. Further, ANDRO blocked hypoxia-triggered ROS generation by suppressing NADPH oxidase (NOX) activation and augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression both in vitro and in vivo. Conventional pulmonary vasodilators have limited efficacy for the treatment of severe PH. We demonstrated that ANDRO may reverse pulmonary vascular remodeling through modulation of NOX/Nrf2-mediated oxidative stress and NF-κB-mediated inflammation. Our findings suggest that ANDRO may have therapeutic value in the treatment of PH.
Collapse
|
10
|
Syukri Y, Taher M, Martien R, Lukitaningsih E, Nugroho AE, Zakaria ZA. Self-nanoemulsifying Delivery of Andrographolide: Ameliorating Islet Beta Cells and Inhibiting Adipocyte Differentiation. Adv Pharm Bull 2020; 11:171-180. [PMID: 33747864 PMCID: PMC7961231 DOI: 10.34172/apb.2021.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/31/2020] [Accepted: 04/19/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: Insulin resistance is a characteristic of non-insulin-dependent diabetes mellitus associated with obesity and caused by the failure of pancreatic beta cells to secrete sufficient amount of insulin. Andrographolide (AND) improves beta-cell reconstruction and inhibits fat-cell formation. This research aimed to improve the delivery of water-insoluble AND in self-nanoemulsifying (ASNE) formulation, tested in streptozotocin (STZ)-induced diabetic rats and 3T3-L1 preadipocyte cells. Methods: A conventional formulation of AND in suspension was used as a control. The experimental rats were orally administered with self-nanoemulsifying (SNE) and suspension of AND for 8 days. Measurements were performed to evaluate blood glucose levels in preprandial and postprandial conditions. Immunohistochemistry was used to assess the process of islet beta cell reconstruction. In vitro study was performed using cell viability and adipocyte differentiation assay to determine the delivery of AND in the formulation. Results: ASNE lowered blood glucose levels (day 4) faster than AND suspension (day 6). The histological testing showed that ASNE could regenerate pancreatic beta cells. Therefore, ASNE ameliorated pancreatic beta cells. The in vitro evaluation indicated the inhibition of adipocyte differentiation by both AND and ASNE, which occurred in a time-dependent manner. ASNE formulation had better delivery than AND. Conclusion: ASNE could improve the antidiabetic activity by lowering blood glucose levels, enhancing pancreatic beta cells, and inhibiting lipid formation in adipocyte cells.
Collapse
Affiliation(s)
- Yandi Syukri
- Department of Pharmacy, Islamic University of Indonesia, Yogyakarta, 55584, Indonesia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Ronny Martien
- Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | | | | | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
11
|
Andrographolide Protects against HG-Induced Inflammation, Apoptosis, Migration, and Impairment of Angiogenesis via PI3K/AKT-eNOS Signalling in HUVECs. Mediators Inflamm 2019; 2019:6168340. [PMID: 31686985 PMCID: PMC6800917 DOI: 10.1155/2019/6168340] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/01/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Andrographolide (Andr) is a major component isolated from the plant Andrographis paniculata. Inflammation, apoptosis, and impaired angiogenesis are implicated in the pathogenesis of high glucose (HG)-induced injury of vascular endotheliocytes. Our study is aimed at evaluating the effect of Andr on HG-induced HUVEC injury and the underlying mechanism. HUVECs were exposed to HG levels (33 mM) and treated with Andr (0, 12.5, 25, and 50 μM). Western blot analysis, real-time PCR, immunofluorescence staining, the scratch test, and the tube formation assay were performed to assess the effects of Andr. We discovered that Andr inhibited the inflammatory response (IL-1β, IL-6, and TNFα), decreased the apoptosis ratio and cell migration, and promoted tube formation in response to HG stimulation. Andr ameliorated the levels of phosphorylated PI3K (p-PI3K), phosphorylated AKT (p-AKT), and phosphorylated eNOS (p-eNOS). The expression of vascular endothelial growth factor (VEGF) protein, a vital factor in angiogenesis, was improved by Andr treatment under HG stimulation. LY294002 is a blocker of PI3K, MK-2206 2HCI (MK-2206) is a highly selective AKT inhibitor, and L-NAME is a suppressor of eNOS, all of which significantly reduce Andr-mediated protective effects in vitro. Hence, Andr may be involved in regulating HG-induced injury by activating PI3K/AKT-eNOS signalling in HUVECs.
Collapse
|
12
|
Andrographolide Derivative AL-1 Ameliorates Dextran Sodium Sulfate-Induced Murine Colitis by Inhibiting NF- κB and MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6138723. [PMID: 31687082 PMCID: PMC6800948 DOI: 10.1155/2019/6138723] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Trinitrobenzenesulfonic acid (TNBS) and dextran sodium sulfate (DSS) are commonly used to induce experimental murine ulcerative colitis (UC). Our recent study has demonstrated that a novel andrographolide derivative, AL-1, ameliorated TNBS-induced colitis in mice. However, the effect of AL-1 on DSS-induced murine colitis and the underlying mechanisms are yet unknown. In the present study, we aimed to investigate the therapeutic potential of AL-1 against DSS-induced UC in mice and to define its mechanisms of action. Oral administration of AL-1 attenuated body weight loss, reduced colon length shortening, lowered the disease activity index score, and alleviated colon histological damage. AL-1 significantly inhibited myeloperoxidase activity and suppressed immune inflammatory responses in colonic tissues. Moreover, AL-1 reversed DSS-altered expression of inflammatory cytokines in DSS-induced colitis mice. Importantly, the efficacy of 45 mg/kg of AL-1 was higher than that of 100 mg/kg of the positive control drugs 5-aminosalicylic acid and mesalazine. AL-1 decreased lipopolysaccharide-induced generation of reactive oxygen species and nitric oxide in cultured macrophages in vitro; it also reversed the altered expression of inflammatory cytokines. In both in vivo and in vitro studies, Western blot analysis revealed that AL-1 reduced the expression of phosphorylated NF-κB p65 and IκBα, downregulated the expression of iNOS and COX-2, and attenuated the expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), ERK, and JNK. In conclusion, AL-1 alleviated DSS-induced murine colitis by inhibiting activation of the NF-κB and MAPK signaling pathways. Our data suggest that AL-1 could be a potential new treatment for UC.
Collapse
|
13
|
Wang Y, Cheng YS, Yin XQ, Yu G, Jia BL. Anxa2 gene silencing attenuates obesity-induced insulin resistance by suppressing the NF-κB signaling pathway. Am J Physiol Cell Physiol 2018; 316:C223-C234. [PMID: 30462534 DOI: 10.1152/ajpcell.00242.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin resistance (IR) continues to pose a major threat to public health due to its role in the pathogenesis of metabolic syndrome and its ever-increasing prevalence on a global scale. The aim of the current study was to investigate the efficacy of Anxa2 in obesity-induced IR through the mediation of the NF-κB signaling pathway. Microarray analysis was performed to screen differentially expressed genes associated with obesity. To verify whether Anxa2 was differentially expressed in IR triggered by obesity, IR mouse models were established in connection with a high-fat diet (HFD). In the mouse IR model, the role of differentially expressed Anxa2 in glycometabolism and IR was subsequently detected. To investigate the effect of Anxa2 on IR and its correlation with inflammation, a palmitic acid (PA)-induced IR cell model was established, with the relationship between Anxa2 and the NF-κB signaling pathway investigated accordingly. Anxa2 was determined to be highly expressed in IR. Silencing Anxa2 was shown to inhibit IR triggered by obesity. When Anxa2 was knocked down, elevated expression of phosphorylated insulin receptor substrate 1 (IRS1), IRS1 and peroxisome proliferator-activated receptor coactivator-1a, and glucose tolerance and insulin sensitivity along with 2-deoxy-d-glucose uptake was detected, whereas decreased expression of suppressor of cytokine signaling 3, IL-6, IL-1β, TNF-α, and p50 was observed. Taken together, the current study ultimately demonstrated that Anxa2 may be a novel drug strategy for IR disruption, indicating that Anxa2 gene silencing is capable of alleviating PA or HFD-induced IR and inflammation through its negative regulatory role in the process of p50 nuclear translocation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yong Wang
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Yun-Sheng Cheng
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Xiao-Qiang Yin
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Gang Yu
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| | - Ben-Li Jia
- Department of Gastrointestinal Surgery, the Second Hospital of Anhui Medical University , Hefei , People's Republic of China
| |
Collapse
|
14
|
Moeinian M, Abdolghaffari AH, Nikfar S, Momtaz S, Abdollahi M. Effects of alpha lipoic acid and its derivative "andrographolid-lipoic acid-1" on ulcerative colitis: A systematic review with meta-analysis of animal studies. J Cell Biochem 2018; 120:4766-4782. [PMID: 30362597 DOI: 10.1002/jcb.27807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
We aimed to review and meta-analyze the inflammatory and oxidative factors following alpha lipoic acid (ALA) and its derivative "andrographolid-lipoic acid-1" (AL-1) in ulcerative colitis (UC). ALA plays an important role in scavenging intracellular radicals and inflammatory elements. AL-1 is found in herbal medicines with potent anti-inflammatory properties. Data were collected from the Google Scholar, PubMed, Scopus, Evidence-based medicine/clinical trials, and Cochrane library database until 2017, which finally resulted in 22 animal studies (70 rats and 162 mice). The beneficial effects of ALA or AL-1 on the most important parameters of UC were reviewed; also, studies were considered separately in mice and rats. Administration of ALA and AL-1 significantly reduced the tumor necrosis factor-α level compared with the controls, while data were not noteworthy in the meta-analysis (mean differences = -18.57 [95% CI = -42.65 to 5.51], P = 0.13). In spite of insignificant decrease in meta-analysis outcomes (differences = 6.92 [95% CI = -39.33 to 53.16], P = 0.77), a significant reduction in myeloperoxidase activity was shown following ALA or AL-1 treatment compared with the controls. Despite significant differences in each study, we had to exclude some studies to homogenize data for meta-analyzing as they showed insignificant results. Interleukin 6, cyclooxygenase-2, glutathione, malondialdehyde, superoxide dismutase, histopathological score, macroscopic and microscopic scores, disease activity index, body weight change, and colon length were also reviewed. Most studies have emphasized on significant positive effects of ALA and AL-1. Comprehensive clinical trials are obligatory to determine the precious position of ALA or AL-1 in the management of UC.
Collapse
Affiliation(s)
- Mahsa Moeinian
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shekoufeh Nikfar
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Li F, Li XM, Sheng D, Chen SR, Nie X, Liu Z, Wang D, Zhao Q, Wang Y, Wang Y, Zhou GC. Discovery and preliminary SAR of 14-aryloxy-andrographolide derivatives as antibacterial agents with immunosuppressant activity. RSC Adv 2018; 8:9440-9456. [PMID: 35541862 PMCID: PMC9078697 DOI: 10.1039/c8ra01063c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
Antibacterials (which restore gut flora balance) and immunosuppressants (which correct immune defects) are two important and effective therapeutic agents for the treatment of inflammatory bowel disease (IBD) in clinical use today. Since the structural skeleton of andrographolide, isolated from Andrographis paniculata, has become known as a natural antibiotic with anti-inflammation and heat-clearing and detoxifying properties, 14-aryloxy andrographolide derivatives have been designed, synthesized, and tested for their antibacterial effects on E. coli, S. aureus, and E. faecalis, which are related to IBD. It has been discovered in this study that the andrographolide skeleton is more selective against E. faecalis, the 14-aryloxy group with basicity is important for antibacterial functions, and the 14-(8'-quinolinyloxy) group is a good pharmacophore with antibacterial activity. In addition, we found that 7b1 and 8b1 are good and selective inhibitors of E. faecalis; two 14β-(8'-quinolinyloxy) andrographolide derivatives, 6b17 and 9b, exhibit good activity against E. coli, S. aureus, and E. faecalis. Likewise and importantly, further exploration of immunosuppressant activity for IBD shows that compound 7b1 is a selective inhibitor of the TNF-α/NF-κB signaling pathway, whereas 8b1 is selectively active against the TLR4/NF-κB signaling pathway; moreover, the compounds 6b17 and 9b are active in inhibiting the IL-6/STAT3, TLR4/NF-κB, and TNF-α/NF-κB signaling pathways. Based on these results, we have further focused on the development of dual function inhibitors of IBD as antibacterial and immunosuppressant agents by structural modification of andrographolide.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Xiao-Min Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Dekuan Sheng
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Xin Nie
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Zhuyun Liu
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Avenida da Universidade, Taipa Macao SAR PR China
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 PR China +86-25-58139415
| |
Collapse
|
16
|
Teng H, Yuan B, Gothai S, Arulselvan P, Song X, Chen L. Dietary triterpenes in the treatment of type 2 diabetes: To date. Trends Food Sci Technol 2018; 72:34-44. [DOI: 10.1016/j.tifs.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Yi Z, Ouyang S, Zhou C, Xie L, Fang Z, Yuan H, Yang J, Zou L, Jia T, Zhao S, Li L, Shi L, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain. Front Pharmacol 2018; 9:593. [PMID: 29950989 PMCID: PMC6008568 DOI: 10.3389/fphar.2018.00593] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022] Open
Abstract
Aim: In this study, we investigated whether andrographolide (Andro) can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action. Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R), interleukin-1β (IL-1β), IL-10, phospho-extracellular regulated protein kinases (ERK) (p-ERK) in the L4-L6 dorsal root ganglia (DRG) were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP) in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7) receptor. Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4-L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4-L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4-L6 DRG on 14th day after surgery. Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.
Collapse
Affiliation(s)
- Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Nursing College, Medical College of Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Shuai Ouyang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Congfa Zhou
- Department of Anatomy, Medical College of Nanchang University, Nanchang, China
| | - Lihui Xie
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Zhi Fang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jinpu Yang
- Undergraduate Student of the Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Tianyu Jia
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Department of Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Shangdong Liang,
| |
Collapse
|
18
|
Wu QQ, Ni J, Zhang N, Liao HH, Tang QZ, Deng W. Andrographolide Protects against Aortic Banding-Induced Experimental Cardiac Hypertrophy by Inhibiting MAPKs Signaling. Front Pharmacol 2017; 8:808. [PMID: 29184496 PMCID: PMC5694538 DOI: 10.3389/fphar.2017.00808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Despite therapeutic advances, heart failure-related mortality rates remain high. Therefore, understanding the pathophysiological mechanisms involved in the remodeling process is crucial for the development of new therapeutic strategies. Andrographolide (Andr), a botanical compound, has potent cardio-protective effects due to its ability to inhibit mitogen-activated protein kinases (MAPKs). Andr has also been shown to inhibit inflammation and apoptosis, which are factors related to cardiac hypertrophy. Our aim was to evaluate the effects of Andr on cardiac hypertrophy and MAPKs activation. Thus, mice were subjected to aortic banding (AB) with/without Andr administration (25 mg/kg/day, orally). Cardiac function was accessed by echocardiography and hemodynamic parameters. Our results showed that Andr administration for 7 weeks decreased cardiac dysfunction and attenuated cardiac hypertrophy and fibrosis in AB mice. Andr treatment induced a strong reduction in the transcription of both hypertrophy (ANP, BNP, and β-MHC) and fibrosis related genes (collagen I, collagen III, CTGF, and TGFβ). In addition, cardiomyocytes treated with Andr showed a reduced hypertrophic response to angiotensin II. Andr significantly inhibited MAPKs activation in both mouse hearts and cardiomyocytes. Treatment with a combination of MAPKs activators abolished the protective effects of Andr in cardiomyocytes. Furthermore, we found that Andr also inhibited the activation of cardiac fibroblasts via the MAPKs pathway, which was confirmed by the application of MAPKs inhibitors. In conclusion, Andr was found to confer a protective effect against experimental cardiac hypertrophy in mice, suggesting its potential as a novel therapeutic drug for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Qing Q Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai H Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi Z Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China.,Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
19
|
Nie X, Chen SR, Wang K, Peng Y, Wang YT, Wang D, Wang Y, Zhou GC. Attenuation of Innate Immunity by Andrographolide Derivatives Through NF-κB Signaling Pathway. Sci Rep 2017; 7:4738. [PMID: 28680097 PMCID: PMC5498490 DOI: 10.1038/s41598-017-04673-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Andrographolide derivatives or analogs exhibit potent anti-inflammatory effects in several disease models through NF-κB activity. In this study, we synthesized different andrographolide derivatives and investigated their effects on the toll-like receptor (TLR)-induced production of pro-inflammatory cytokines. Among these compounds, 3b, 5a, and 5b inhibited both TNF-α/NF-κB and TLR4/NF-κB signaling pathways. Treatment with compounds 3b, 5a, and 5b and their structural analogs, 3a and 6b, suppressed the expression of pro-inflammatory cytokines upon the activation of TLR3 and TLR4 ligands. Compounds 3b and 5a, but not 3a, 5b, or 6b, inhibited the nuclear translocation of the NF-κB p65 subunit. Treatment with compounds 3b, 5a, 3a, 5b, and 6b attenuated the phosphorylation of p65 and IκBα. Compounds 6b suppressed the expression of the NF-κB p65 subunit. However, these compounds, except for 5b, did not affect the TLR9-induced NF-κB-independent production of the pro-inflammatory cytokines, TNF-α, and IFN-β. Compound 3b potentially protected mice from LPS-induced acute pulmonary inflammation through the inhibition of p65 phosphorylation and the decrease of serum pro-inflammatory cytokines and chemokine. Our study revealed a functional structure–activity relationship between andrographolide derivatives and innate immunity. We identified compound 3b as a potent immune suppressive agent with the potential to protect acute pulmonary infection.
Collapse
Affiliation(s)
- Xin Nie
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Kun Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Yuran Peng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| |
Collapse
|
20
|
Duan X, Li T, Han X, Ren J, Chen P, Li H, Gong S. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide. Oncotarget 2017; 8:90905-90915. [PMID: 29207612 PMCID: PMC5710893 DOI: 10.18632/oncotarget.18677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
High concentrations of arsenic trioxide (As2O3) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As2O3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo. Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As2O3 plus andrographolide. These findings suggest that the combination of andrographolide and As2O3 could yield therapeutic benefits in the treatment of HCC.
Collapse
Affiliation(s)
- Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Hao Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shaojun Gong
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
21
|
Nishiyama K, Fujimoto Y, Takeuchi T, Azuma YT. Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis. Neurochem Res 2017; 43:19-26. [PMID: 28424949 DOI: 10.1007/s11064-017-2269-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/09/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
From the immunological point of view, macrophages are required to maintain metabolic homeostasis. Recently, there has been an increased focus on the influence of macrophage phenotypes in adipose tissue on the maintenance of metabolic homeostasis in healthy conditions because dysregulated metabolic homeostasis causes metabolic syndrome. This review notes several types of inflammatory and anti-inflammatory mediators in metabolic homeostasis. M1 macrophage polarization mediates inflammation, whereas M2 macrophage polarization mediates anti-inflammation. Fatty acids and their related factors mediate both inflammatory and anti-inflammatory responses. Saturated fatty acids and polyunsaturated fatty acids mediate inflammation, whereas marine-derived n-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, mediate anti-inflammation. In this review, we discuss the current understanding of the crosstalk between fatty acids and inflammation in macrophages and their influence on metabolic homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nishiyama
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasuyuki Fujimoto
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Tadayoshi Takeuchi
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan
| | - Yasu-Taka Azuma
- Laboratory of Veterinary Pharmacology, Division of Veterinary Science, Osaka Prefecture University Graduate School of Life and Environmental Science, 1-58 Rinku-ohraikita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
22
|
Islam MT. Diterpenes and Their Derivatives as Potential Anticancer Agents. Phytother Res 2017; 31:691-712. [PMID: 28370843 DOI: 10.1002/ptr.5800] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022]
Abstract
As therapeutic tools, diterpenes and their derivatives have gained much attention of the medicinal scientists nowadays. It is due to their pledging and important biological activities. This review congregates the anticancer diterpenes. For this, a search was made with selected keywords in PubMed, Science Direct, Web of Science, Scopus, The American Chemical Society and miscellaneous databases from January 2012 to January 2017 for the published articles. A total 28, 789 published articles were seen. Among them, 240 were included in this study. More than 250 important anticancer diterpenes and their derivatives were seen in the databases, acting in the different pathways. Some of them are already under clinical trials, while others are in the nonclinical and/or pre-clinical trials. In conclusion, diterpenes may be one of the lead molecules in the treatment of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Southern University Bangladesh, Northeast Biotechnology Network (RENORBIO), Postgraduate Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|
23
|
Shen CY, Jiang JG, Yang L, Wang DW, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol 2016; 174:1395-1425. [PMID: 27659301 DOI: 10.1111/bph.13631] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Ageing, an unanswered question in the medical field, is a multifactorial process that results in a progressive functional decline in cells, tissues and organisms. Although it is impossible to prevent ageing, slowing down the rate of ageing is entirely possible to achieve. Traditional Chinese medicine (TCM) is characterized by the nourishing of life and its role in anti-ageing is getting more and more attention. This article summarizes the work done on the natural products from TCM that are reported to have anti-ageing effects, in the past two decades. The effective anti-ageing ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, alkaloids and others. Astragaloside, Cistanche tubulosa acteoside, icariin, tetrahydrocurcumin, quercetin, butein, berberine, catechin, curcumin, epigallocatechin gallate, gastrodin, 6-Gingerol, glaucarubinone, ginsenoside Rg1, luteolin, icarisid II, naringenin, resveratrol, theaflavin, carnosic acid, catalpol, chrysophanol, cycloastragenol, emodin, galangin, echinacoside, ferulic acid, huperzine, honokiol, isoliensinine, phycocyanin, proanthocyanidins, rosmarinic acid, oxymatrine, piceid, puerarin and salvianolic acid B are specified in this review. Simultaneously, chemical structures of the monomers with anti-ageing activities are listed, and their source, model, efficacy and mechanism are also described. The TCMs with anti-ageing function are classified according to their action pathways, including the telomere and telomerase, the sirtuins, the mammalian target of rapamycin, AMP-activated kinase and insulin/insulin-like growth factor-1 signalling pathway, free radicals scavenging and the resistance to DNA damage. Finally, Chinese compound prescription and extracts related to anti-ageing are introduced, which provides the basis and the direction for the further development of novel and potential drugs. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Li Yang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Da-Wei Wang
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
García-Díaz JA, Navarrete-Vázquez G, García-Jiménez S, Hidalgo-Figueroa S, Almanza-Pérez JC, Alarcón-Aguilar FJ, Gómez-Zamudio J, Cruz M, Ibarra-Barajas M, Estrada-Soto S. Antidiabetic, antihyperlipidemic and anti-inflammatory effects of tilianin in streptozotocin-nicotinamide diabetic rats. Biomed Pharmacother 2016; 83:667-675. [DOI: 10.1016/j.biopha.2016.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
|
25
|
Hu J, Shi K, Meng Q. Mapping the knowledge of international Chinese medicines treatment on type 2 diabetes: A biblimetrical study. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2016. [DOI: 10.1016/j.jtcms.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
26
|
Andrographolide derivative AL-1 ameliorates TNBS-induced colitis in mice: involvement of NF-кB and PPAR-γ signaling pathways. Sci Rep 2016; 6:29716. [PMID: 27435110 PMCID: PMC4951727 DOI: 10.1038/srep29716] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022] Open
Abstract
Andrographolide is a traditional herb medicine, widely used in Asia for conditions involving inflammation. The andrographlide-lipoic acid conjugate, AL-1, has been found being able to alleviate inflammation in our previous reports. Although the anti-inflammatory activity of AL-1 contributes to its cytoprotective effects, whether AL-1 can improve inflammatory bowel disease (IBD) and the underlying mechanisms of its action remain largely unknown. In this study, we investigated the anti-inflammatory effects of AL-1 in C57BL/6 mice with trinitrobenzenesulfonic acid (TNBS)-induced colitis. The body weight loss and length change of colon after TNBS instillation were more severe than those in normal mice. AL-1 treatment led to significant reductions in disease activity index (DAI), macroscopic score and colon mucosa damage index (CMDI) associated with TNBS administration. AL-1 inhibited the inflammatory response via lowering the level of inflammatory cytokines and myeloperoxidase (MPO) activity. AL-1 attenuated the expression of p-p65, p-IκBα and COX-2 in the colitis mice. The alleviation of colon injury by AL-1 treatment was also evidenced by the increased expression of PPAR-γ. These results indicated that AL-1 could protect intestinal tract from the injury induced by TNBS in mice, suggesting that AL-1 may have potential in treatment for IBD.
Collapse
|
27
|
Zhang D, Lin J, Zhang F, Han X, Han L, Yang M, Zou W. Preparation and Evaluation of Andrographolide Solid Dispersion Vectored by Silicon Dioxide. Pharmacogn Mag 2016; 12:S245-52. [PMID: 27279715 PMCID: PMC4883087 DOI: 10.4103/0973-1296.182156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/17/2015] [Indexed: 01/22/2023] Open
Abstract
Background: Andrographolide (Andro) is a “natural antibiotic” as well as a typical insoluble drug. The purpose of this study was to investigate the feasibility of commercially available silica (SiO2) as a carrier of solid dispersion to enhance the dissolution of Andro. Materials and Methods: The solvent evaporation method was adopted, and a series of process parameters were studied to prepare a solid dispersion. Andro, SiO2, physical mixture, and solid dispersion were characterized with respect to particle size distribution, special surface area, pore volume, and scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. Results: Single factor test suggested the best preparation of solid dispersion was the drug and carrier (SiO2B) ratio of 1:8, with tetrahydrofuran as the solvent, and a recovery temperature of 50°C. Compared to crude drug and mixture, solid dispersion was found to form a unique structure to disperse the drug and displayed superior performance in rapid dissolution. Conclusion: The present study signifies the commercially available SiO2 is an excellent but cheap carrier to improve the dissolution of Andro. Our results provide a highly operability approach for improving the dissolution of insoluble natural products and are beneficial for the clinical effects improvement. SUMMARY The potential of commercially available silica as a carrier for enhancing the insoluble drug dissolution was investigated Factors affecting the dissolution of solid dispersion were investigated Solid dispersion formed a unique structure to disperse the drug and release drug rapidly Commercially available silica is an excellent but cheap carrier to improve the dissolution of Andro.
Abbreviation used: Andro: Andrographolide, BCS: Biopharmaceutics Classification System, SDS: Tetrahydrofuran and Sodium dodecyl sulfate, HPLC: High Performance Liquid Chromatography, SEM: Scanning Electron Microscope, BET: Brumauer–Emmett–Teller, FTIR: Fourier Transform Infrared Spectroscopy, XRD: X-ray Diffraction.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junzhi Lin
- Teaching Hospital of Chengdu University of TCM, Chengdu 610072, China
| | - Fang Zhang
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue Han
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China
| | | |
Collapse
|
28
|
Zhou L, Wang L, Yang B, Zeng J, Zhang Q, Lei H, Xu S. Protective effect of pretreatment with propofol against tumor necrosis factor-α-induced hepatic insulin resistance. Exp Ther Med 2015; 10:289-294. [PMID: 26170951 DOI: 10.3892/etm.2015.2496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 05/01/2015] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is common in critically ill patients and seriously affects their prognosis. The anesthetic propofol (2,6-diisopropylphenol) has been shown to cause insulin resistance in rats; however, the specific mechanism underlying this phenomenon remains unknown. Thus, the aim of the present study was to determine the molecular mechanism through which propofol influences insulin resistance in the liver. The current study assessed the effects of propofol on the phosphorylation level of key enzymes involved in the insulin signaling pathway, as well as the glycogen content in primary mouse hepatocytes. Propofol administration was demonstrated to considerably reduce the phosphorylation levels of Akt (Ser473) and glycogen synthase kinase (GSK)-3β (Ser9) in the primary mouse hepatocytes. In addition, propofol was shown to downregulate the phosphoinositide 3-kinase (PI3K)/Akt/GSK-3β signaling pathway and inhibit glycogen synthesis in hepatocytes. Thus, the present results indicated that propofol induced insulin resistance in primary mouse hepatocytes. Notably, pretreatment with propofol in tumor necrosis factor (TNF)-α-induced primary mouse hepatocytes with insulin resistance was demonstrated to alleviate the inhibitory effects of TNF-α on the PI3K/Akt/GSK-3β signaling pathway and glycogen synthesis. These results indicated that propofol exerts a protective effect against insulin resistance in primary mouse hepatocytes induced by TNF-α, indicating that propofol therapy may be clinically feasible to alleviate insulin resistance in critically ill patients.
Collapse
Affiliation(s)
- Long Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China ; Department of Medicine, Shenzhen Family Planning Service Center, Shenzhen, Guangdong 518028, P.R. China
| | - Lilin Wang
- Shenzhen Blood Center, Shenzhen, Guangdong 518035, P.R. China
| | - Baocheng Yang
- Shenzhen Blood Center, Shenzhen, Guangdong 518035, P.R. China
| | - Jinfeng Zeng
- Shenzhen Blood Center, Shenzhen, Guangdong 518035, P.R. China
| | - Qingguo Zhang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Hongyi Lei
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|