1
|
Liu G, Liu J, Kong X, Xiong WJ, Jiang R. Effect of hypoandrogenism on expression of transient receptor potential vanilloid channels in rat penile corpus cavernosum and erectile function. J Sex Med 2023; 20:1153-1160. [PMID: 37490314 DOI: 10.1093/jsxmed/qdad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Hypoandrogenism is a cause of erectile dysfunction (ED). Vascular smooth muscle cell contraction and relaxation are regulated by TRPV1-4 channels. However, the influence of hypoandrogenism on TRPV1-4 and its relationship with erectile function remain unclear. AIM To reveal whether hypoandrogenism affects erectile function by influencing TRPV1-4 expression in the corpus cavernosum of rats. METHODS Male Sprague-Dawley rats (N = 36) aged 8 weeks were assigned to 6 groups at random (n = 6): sham operation, castrated, castrated + testosterone replacement, sham operation + transfection, castrated + transfection, and castrated + empty transfection. Four weeks after castration, 20 μL of lentiviral vector (1 × 108 TU/mL) carrying the TRPV4 gene was injected into the penile cavernous tissue of the transfection groups. One week after transfection, the maximum intracavernous pressure (ICPmax)/mean arterial pressure (MAP) and the content of TRPV1-4, phosphorylated eNOS (p-eNOS)/eNOS, and nitric oxide (NO) in penile cavernous tissue of each group were measured. OUTCOMES Under low androgen conditions, TRPV4 expression in endothelial cells in the rat penile cavernosum was sharply reduced, resulting in a decrease in p-eNOS/eNOS and NO content, which could inhibit erectile function. RESULTS In rat penile cavernous tissue, TRPV1-4 was expressed in the cell membranes of endothelial cells and smooth muscle cells. The ICPmax/MAP and the content of TRPV4, p-eNOS/eNOS, and NO end product nitrite level in rat penile cavernous tissue was markedly reduced in the castrated group as compared with the sham group (P < .05). The ICPmax/MAP and the content of TRPV4, p-eNOS/eNOS, and NO end product nitrite level in rat penile cavernous tissue were markedly improved in the castrated + transfection group vs the castrated group (P < .01). CLINICAL IMPLICATIONS Upregulation of TRPV4 expression in penile cavernosum tissue might be a viable therapeutic for ED caused by hypoandrogenism. STRENGTHS AND LIMITATIONS The specific mechanism of TRPV4 in ED needs to be further verified by androgen receptor or TRPV4 gene knockout experiments. CONCLUSION Hypoandrogenism may cause ED by reducing the expression of TRPV4 in rat penile cavernous tissue. Upregulation of TRPV4 expression in penile cavernous tissue can increase the ratio of p-eNOS/eNOS and NO levels and ameliorate the erectile function of castrated rats.
Collapse
Affiliation(s)
- Gang Liu
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jing Liu
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiangjun Kong
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wen-Ju Xiong
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Granfeldt A, Andersen LW, Vallentin MF, Hilberg O, Hasselstrøm JB, Sørensen LK, Mogensen S, Christensen S, Grejs AM, Rasmussen BS, Kristiansen KT, Strøm T, Johansen IS, Schjørring OL, Simonsen U. Senicapoc treatment in COVID-19 patients with severe respiratory insufficiency-A randomized, open-label, phase II trial. Acta Anaesthesiol Scand 2022; 66:838-846. [PMID: 35403225 PMCID: PMC9111301 DOI: 10.1111/aas.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The aim of the current study was to determine if treatment with senicapoc, improves the PaO2 /FiO2 ratio in patients with COVID-19 and severe respiratory insufficiency. METHODS Investigator-initiated, randomized, open-label, phase II trial in four intensive care units (ICU) in Denmark. We included patients aged ≥18 years and admitted to an ICU with severe respiratory insufficiency due to COVID-19. The intervention consisted of 50 mg enteral senicapoc administered as soon as possible after randomization and again after 24 h. Patients in the control group received standard care only. The primary outcome was the PaO2 /FiO2 ratio at 72 h. RESULTS Twenty patients were randomized to senicapoc and 26 patients to standard care. Important differences existed in patient characteristics at baseline, including more patients being on non-invasive/invasive ventilation in the control group (54% vs. 35%). The median senicapoc concentration at 72 h was 62.1 ng/ml (IQR 46.7-71.2). The primary outcome, PaO2 /FiO2 ratio at 72 h, was significantly lower in the senicapoc group (mean 19.5 kPa, SD 6.6) than in the control group (mean 24.4 kPa, SD 9.2) (mean difference -5.1 kPa [95% CI -10.2, -0.04] p = .05). The 28-day mortality in the senicapoc group was 2/20 (10%) compared with 6/26 (23%) in the control group (OR 0.36 95% CI 0.06-2.07, p = .26). CONCLUSIONS Treatment with senicapoc resulted in a significantly lower PaO2 /FiO2 ratio at 72 h with no differences for other outcomes.
Collapse
Affiliation(s)
- Asger Granfeldt
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Lars W. Andersen
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Prehospital Emergency Medical ServicesCentral Denmark RegionDenmark
- Research Center for Emergency MedicineAarhus University HospitalAarhusDenmark
| | - Mikael F. Vallentin
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Prehospital Emergency Medical ServicesCentral Denmark RegionDenmark
| | - Ole Hilberg
- Department of MedicineVejle HospitalVejleDenmark
| | - Jørgen B. Hasselstrøm
- Section for Forensic Chemistry, Department of Forensic MedicineAarhus UniversityAarhusDenmark
| | - Lambert K. Sørensen
- Section for Forensic Chemistry, Department of Forensic MedicineAarhus UniversityAarhusDenmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| | - Steffen Christensen
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anders M. Grejs
- Department of Anesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Bodil S. Rasmussen
- Department of Anesthesia and Intensive CareAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | | | - Thomas Strøm
- Department of AnesthesiologyOdense University HospitalOdenseDenmark
- Department of Anesthesiology, Hospital of Southern JutlandUniversity of Southern DenmarkOdenseDenmark
| | - Isik S. Johansen
- Department of Infectious DiseasesOdense University HospitalOdenseDenmark
| | - Olav L. Schjørring
- Department of Anesthesia and Intensive CareAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| |
Collapse
|
3
|
Petersen AG, Lind PC, Mogensen S, Jensen ASB, Granfeldt A, Simonsen U. Treatment with senicapoc, a K Ca 3.1 channel blocker, alleviates hypoxaemia in a mouse model of acute respiratory distress syndrome. Br J Pharmacol 2022; 179:2175-2192. [PMID: 34623632 DOI: 10.1111/bph.15704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute respiratory distress syndrome (ARDS) is characterized by pulmonary oedema and severe hypoxaemia. We investigated whether genetic deficit or blockade of calcium-activated potassium (KCa 3.1) channels would counteract pulmonary oedema and hypoxaemia in ventilator-induced lung injury, an experimental model for ARDS. EXPERIMENTAL APPROACH KCa 3.1 channel knockout (Kccn4-/- ) mice were exposed to ventilator-induced lung injury. Control mice exposed to ventilator-induced lung injury were treated with the KCa 3.1 channel inhibitor, senicapoc. The outcomes were oxygenation (PaO2 /FiO2 ratio), lung compliance, lung wet-to-dry weight and protein and cytokines in bronchoalveolar lavage fluid (BALF). KEY RESULTS Ventilator-induced lung injury resulted in lung oedema, decreased lung compliance, a severe drop in PaO2 /FiO2 ratio, increased protein, neutrophils and tumour necrosis factor-alpha (TNF-α) in BALF from wild-type mice compared with Kccn4-/- mice. Pretreatment with senicapoc (10-70 mg·kg-1 ) prevented the reduction in PaO2 /FiO2 ratio, decrease in lung compliance, increased protein and TNF-α. Senicapoc (30 mg·kg-1 ) reduced histopathological lung injury score and neutrophils in BALF. After injurious ventilation, administration of 30 mg·kg-1 senicapoc also improved the PaO2 /FiO2 ratio and reduced lung injury score and neutrophils in the BALF compared with vehicle-treated mice. In human lung epithelial cells, senicapoc decreased TNF-α-induced permeability. CONCLUSIONS AND IMPLICATIONS Genetic deficiency of KCa 3.1 channels and senicapoc improved the PaO2 /FiO2 ratio and decreased the cytokines after a ventilator-induced lung injury. Moreover, senicapoc directly affects lung epithelial cells and blocks neutrophil infiltration in the injured lung. These findings indicate that blocking KCa 3.1 channels is a potential treatment in ARDS-like disease.
Collapse
Affiliation(s)
- Asbjørn Graver Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Peter Carøe Lind
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Anne-Sophie Bonde Jensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Anaesthesiology, Aarhus University Hospital, Aarhus, Denmark
- Intensive Care, Aarhus University Hospital, Aarhus, Denmark
- Department of Intensive Care Medicine, Randers Regional Hospital, Randers, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Kärki T, Tojkander S. TRPV Protein Family-From Mechanosensing to Cancer Invasion. Biomolecules 2021; 11:1019. [PMID: 34356643 PMCID: PMC8301805 DOI: 10.3390/biom11071019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Biophysical cues from the cellular microenvironment are detected by mechanosensitive machineries that translate physical signals into biochemical signaling cascades. At the crossroads of extracellular space and cell interior are located several ion channel families, including TRP family proteins, that are triggered by mechanical stimuli and drive intracellular signaling pathways through spatio-temporally controlled Ca2+-influx. Mechanosensitive Ca2+-channels, therefore, act as critical components in the rapid transmission of physical signals into biologically compatible information to impact crucial processes during development, morphogenesis and regeneration. Given the mechanosensitive nature of many of the TRP family channels, they must also respond to the biophysical changes along the development of several pathophysiological conditions and have also been linked to cancer progression. In this review, we will focus on the TRPV, vanilloid family of TRP proteins, and their connection to cancer progression through their mechanosensitive nature.
Collapse
Affiliation(s)
- Tytti Kärki
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Sari Tojkander
- Department of Veterinary Biosciences, Section of Pathology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Liu L, Guo M, Lv X, Wang Z, Yang J, Li Y, Yu F, Wen X, Feng L, Zhou T. Role of Transient Receptor Potential Vanilloid 4 in Vascular Function. Front Mol Biosci 2021; 8:677661. [PMID: 33981725 PMCID: PMC8107436 DOI: 10.3389/fmolb.2021.677661] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are widely expressed in systemic tissues and can be activated by many stimuli. TRPV4, a Ca2+-permeable cation channel, plays an important role in the vasculature and is implicated in the regulation of cardiovascular homeostasis processes such as blood pressure, vascular remodeling, and pulmonary hypertension and edema. Within the vasculature, TRPV4 channels are expressed in smooth muscle cells, endothelial cells, and perivascular nerves. The activation of endothelial TRPV4 contributes to vasodilation involving nitric oxide, prostacyclin, and endothelial-derived hyperpolarizing factor pathways. TRPV4 activation also can directly cause vascular smooth muscle cell hyperpolarization and vasodilation. In addition, TRPV4 activation can evoke constriction in some specific vascular beds or under some pathological conditions. TRPV4 participates in the control of vascular permeability and vascular damage, particularly in the lung capillary endothelial barrier and lung injury. It also participates in vascular remodeling regulation mainly by controlling vasculogenesis and arteriogenesis. This review examines the role of TRPV4 in vascular function, particularly in vascular dilation and constriction, vascular permeability, vascular remodeling, and vascular damage, along with possible mechanisms, and discusses the possibility of targeting TRPV4 for therapy.
Collapse
Affiliation(s)
- Liangliang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mengting Guo
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaowang Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiwei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jigang Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yanting Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Pacheco G, Oliveira AP, Noleto IRSG, Araújo AK, Lopes ALF, Sousa FBM, Chaves LS, Alves EHP, Vasconcelos DFP, Araujo AR, Nicolau LD, Magierowski M, Medeiros JVR. Activation of transient receptor potential vanilloid channel 4 contributes to the development of ethanol-induced gastric injury in mice. Eur J Pharmacol 2021; 902:174113. [PMID: 33901460 DOI: 10.1016/j.ejphar.2021.174113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The transient receptor potential vanilloid channel 4 (TRPV4) is associated with the development of several pathologies, particularly gastric disorders. However, there are no studies associating this receptor with the pathophysiology of gastric erosions. The aim of this study was to investigate the role of TRPV4 in the development of ethanol-induced gastric damage in vivo. Gastric lesions were induced by ethanol in Swiss mice pretreated with TRPV4 antagonists, GSK2193874 (0.1; 0.3 and 0.9 mg/kg) or Ruthenium red (0.03; 0.1 or 0.3 mg/kg) or its agonist, GSK1016790A (0.9 mg/kg). Gastric mucosal samples were taken for histopathology, immunohistochemistry, atomic force microscopy and evaluation of antioxidant parameters. The gastric mucus content and TRPV4 mRNA expression were analyzed. Ethanol exposure induced upregulation of gastric mRNA and protein expression of TRPV4. TRPV4 blockade promoted gastroprotection against ethanol-induced injury on macro- and microscopic levels, leading to reduced hemorrhage, cell loss and edema and enhanced gastric mucosal integrity. Moreover, an increase in superoxide dismutase (SOD) and glutathione (GSH) activity was observed, followed by a decrease in malondialdehyde (MDA) levels. TRPV4 blockade during alcohol challenge reestablished gastric mucus content. The combination of TRPV4 agonist and ethanol revealed macroscopic exacerbation of gastric damage area. Our results confirmed the association of TRPV4 with the development of gastric injury, showing the importance of this receptor for further investigations in the field of gastrointestinal pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Gabriella Pacheco
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Ana P Oliveira
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Isabela R S G Noleto
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Andreza K Araújo
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - André L F Lopes
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Letícia S Chaves
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Even H P Alves
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Daniel F P Vasconcelos
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil; The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Alyne R Araujo
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - LucasA D Nicolau
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Marcin Magierowski
- Gaseous Mediators and Experimental Gastroenterology Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jand Venes R Medeiros
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil; The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
7
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
8
|
Petersen AG, Lind PC, Jensen ASB, Eggertsen MA, Granfeldt A, Simonsen U. Treatment with senicapoc in a porcine model of acute respiratory distress syndrome. Intensive Care Med Exp 2021; 9:20. [PMID: 33870468 PMCID: PMC8053424 DOI: 10.1186/s40635-021-00381-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background Senicapoc is a potent and selective blocker of KCa3.1, a calcium-activated potassium channel of intermediate conductance. In the present study, we investigated whether there is a beneficial effect of senicapoc in a large animal model of acute respiratory distress syndrome (ARDS). The primary end point was the PaO2/FiO2 ratio. Methods ARDS was induced in female pigs (42–49 kg) by repeated lung lavages followed by injurious mechanical ventilation. Animals were then randomly assigned to vehicle (n = 9) or intravenous senicapoc (10 mg, n = 9) and received lung-protective ventilation for 6 h. Results Final senicapoc plasma concentrations were 67 ± 18 nM (n = 9). Senicapoc failed to change the primary endpoint PaO2/FiO2 ratio (senicapoc, 133 ± 23 mmHg; vehicle, 149 ± 68 mmHg). Lung compliance remained similar in the two groups. Senicapoc reduced the level of white blood cells and neutrophils, while the proinflammatory cytokines TNFα, IL-1β, and IL-6 in the bronchoalveolar lavage fluid were unaltered 6 h after induction of the lung injury. Senicapoc-treatment reduced the level of neutrophils in the alveolar space but with no difference between groups in the cumulative lung injury score. Histological analysis of pulmonary hemorrhage indicated a positive effect of senicapoc on alveolar–capillary barrier function, but this was not supported by measurements of albumin content and total protein in the bronchoalveolar lavage fluid. Conclusions In summary, senicapoc failed to improve the primary endpoint PaO2/FiO2 ratio, but reduced pulmonary hemorrhage and the influx of neutrophils into the lung. These findings open the perspective that blocking KCa3.1 channels is a potential treatment to reduce alveolar neutrophil accumulation and improve long-term outcome in ARDS. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00381-z.
Collapse
Affiliation(s)
| | - Peter C Lind
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Asger Granfeldt
- Department of Clinical Medicine, Anesthesiology, Aarhus University Hospital, Aarhus, Denmark. .,Department of Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99 G304, 8200, Aarhus, Denmark.
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Chen YL, Sonkusare SK. Endothelial TRPV4 channels and vasodilator reactivity. CURRENT TOPICS IN MEMBRANES 2020; 85:89-117. [PMID: 32402646 PMCID: PMC9748413 DOI: 10.1016/bs.ctm.2020.01.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) ion channels on the endothelial cell membrane are widely regarded as a crucial Ca2+ influx pathway that promotes endothelium-dependent vasodilation. The downstream vasodilatory targets of endothelial TRPV4 channels vary among different vascular beds, potentially contributing to endothelial cell heterogeneity. Although numerous studies have examined the role of endothelial TRPV4 channels using specific pharmacological tools over the past decade, their physiological significance remains unclear, mainly due to a lack of endothelium-specific knockouts. Moreover, the loss of endothelium-dependent vasodilation is a significant contributor to vascular dysfunction in cardiovascular disease. The activity of endothelial TRPV4 channels is impaired in cardiovascular disease; therefore, strategies targeting the mechanisms that reduce endothelial TRPV4 channel activity may restore vascular function and provide therapeutic benefit. In this chapter, we discuss endothelial TRPV4 channel-dependent signaling mechanisms, the heterogeneity in endogenous activators and targets of endothelial TRPV4 channels, and the role of endothelial TRPV4 channels in the pathogenesis of cardiovascular diseases. We also discuss potentially interesting future research directions that may provide novel insights into the physiological and pathological roles of endothelial TRPV4 channels.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, United States,Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, United States,Corresponding author:
| |
Collapse
|
10
|
Pethő Z, Najder K, Bulk E, Schwab A. Mechanosensitive ion channels push cancer progression. Cell Calcium 2019; 80:79-90. [PMID: 30991298 DOI: 10.1016/j.ceca.2019.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
In many cases, the mechanical properties of a tumor are different from those of the host tissue. Mechanical cues regulate cancer development by affecting both tumor cells and their microenvironment, by altering cell migration, proliferation, extracellular matrix remodeling and metastatic spread. Cancer cells sense mechanical stimuli such as tissue stiffness, shear stress, tissue pressure of the extracellular space (outside-in mechanosensation). These mechanical cues are transduced into a cellular response (e. g. cell migration and proliferation; inside-in mechanotransduction) or to a response affecting the microenvironment (e. g. inducing a fibrosis or building up growth-induced pressure; inside-out mechanotransduction). These processes heavily rely on mechanosensitive membrane proteins, prominently ion channels. Mechanosensitive ion channels are involved in the Ca2+-signaling of the tumor and stroma cells, both directly, by mediating Ca2+ influx (e. g. Piezo and TRP channels), or indirectly, by maintaining the electrochemical gradient necessary for Ca2+ influx (e. g. K2P, KCa channels). This review aims to discuss the diverse roles of mechanosenstive ion channels in cancer progression, especially those involved in Ca2+-signaling, by pinpointing their functional relevance in tumor pathophysiology.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Karolina Najder
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| |
Collapse
|
11
|
Behringer EJ, Hakim MA. Functional Interaction among K Ca and TRP Channels for Cardiovascular Physiology: Modern Perspectives on Aging and Chronic Disease. Int J Mol Sci 2019; 20:ijms20061380. [PMID: 30893836 PMCID: PMC6471369 DOI: 10.3390/ijms20061380] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Effective delivery of oxygen and essential nutrients to vital organs and tissues throughout the body requires adequate blood flow supplied through resistance vessels. The intimate relationship between intracellular calcium ([Ca2+]i) and regulation of membrane potential (Vm) is indispensable for maintaining blood flow regulation. In particular, Ca2+-activated K+ (KCa) channels were ascertained as transducers of elevated [Ca2+]i signals into hyperpolarization of Vm as a pathway for decreasing vascular resistance, thereby enhancing blood flow. Recent evidence also supports the reverse role for KCa channels, in which they facilitate Ca2+ influx into the cell interior through open non-selective cation (e.g., transient receptor potential; TRP) channels in accord with robust electrical (hyperpolarization) and concentration (~20,000-fold) transmembrane gradients for Ca2+. Such an arrangement supports a feed-forward activation of Vm hyperpolarization while potentially boosting production of nitric oxide. Furthermore, in vascular types expressing TRP channels but deficient in functional KCa channels (e.g., collecting lymphatic endothelium), there are profound alterations such as downstream depolarizing ionic fluxes and the absence of dynamic hyperpolarizing events. Altogether, this review is a refined set of evidence-based perspectives focused on the role of the endothelial KCa and TRP channels throughout multiple experimental animal models and vascular types. We discuss the diverse interactions among KCa and TRP channels to integrate Ca2+, oxidative, and electrical signaling in the context of cardiovascular physiology and pathology. Building from a foundation of cellular biophysical data throughout a wide and diverse compilation of significant discoveries, a translational narrative is provided for readers toward the treatment and prevention of chronic, age-related cardiovascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Md A Hakim
- Department of Basic Sciences, 11041 Campus Street, Risley Hall, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
12
|
Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease. Pharmaceuticals (Basel) 2019; 12:ph12010023. [PMID: 30717260 PMCID: PMC6469169 DOI: 10.3390/ph12010023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The lungs are essential for gas exchange and serve as the gateways of our body to the external environment. They are easily accessible for drugs from both sides, the airways and the vasculature. Recent literature provides evidence for a role of Transient Receptor Potential (TRP) channels as chemosensors and essential members of signal transduction cascades in stress-induced cellular responses. This review will focus on TRP channels (TRPA1, TRPC6, TRPV1, and TRPV4), predominantly expressed in non-neuronal lung tissues and their involvement in pathways associated with diseases like asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD), lung fibrosis, and edema formation. Recently identified specific modulators of these channels and their potential as new therapeutic options as well as strategies for a causal treatment based on the mechanistic understanding of molecular events will also be evaluated.
Collapse
|
13
|
Matsumoto K, Kato S. [TRPV4 regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis]. Nihon Yakurigaku Zasshi 2018; 152:170-174. [PMID: 30298837 DOI: 10.1254/fpj.152.170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel involved in physical sensing in various tissue types. The present study aimed to elucidate the function and expression of TRPV4 in colonic vascular endothelial cells during dextran sulphate sodium (DSS)-induced colitis. The role of TRPV4 in the progression of colonic inflammation was examined in the 2% DSS-induced murine colitis model using immunohistochemical analysis, Western blotting, and Evans blue dye extrusion assay. DSS-induced colitis was significantly attenuated in TRPV4-deficient (TRPV4 KO) mice when compared to wild-type mice. Repeated intrarectal administration of GSK1016790A, a TRPV4 agonist, exacerbated the severity of DSS-induced colitis. Bone marrow transfer experiments demonstrated a dominant role of TRPV4 in non-haematopoietic cells for DSS-induced colitis. DSS treatment upregulated TRPV4 expression in the vascular endothelia of colonic mucosa and submucosa. DSS treatment increased vascular permeability, which was abolished in TRPV4 KO mice. The DSS-induced increase in vascular permeability was further enhanced by intravenous administration of GSK1016790A, which was abrogated by a TRPV4 antagonist RN1734. TRPV4 was co-localized with vascular endothelial (VE)-cadherin, and VE-cadherin expression was decreased by repeated intravenous administration of GSK1016790A during colitis. Furthermore, TRPV4 activation by GSK106790A decreased VE-cadherin expression in mouse aortic endothelial cells exposed to TNF-α. These findings indicate that TRPV4 upregulation in vascular endothelial cells contributes to the progression of colonic inflammation via the activation of vascular permeability. Thus, TRPV4 is an attractive target for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University
| |
Collapse
|
14
|
Dagenais A, Desjardins J, Shabbir W, Roy A, Filion D, Sauvé R, Berthiaume Y. Loss of barrier integrity in alveolar epithelial cells downregulates ENaC expression and activity via Ca 2+ and TRPV4 activation. Pflugers Arch 2018; 470:1615-1631. [PMID: 30088081 DOI: 10.1007/s00424-018-2182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023]
Abstract
The epithelial Na channel (ENaC) plays an essential role in lung physiology by modulating the amount of liquid lining the respiratory epithelium. Here, we tested the effect of breaking alveolar epithelial cell barrier integrity on ENaC expression and function. We found that either mechanical wounding by scratching the monolayer or disruption of tight junction with EDTA induced a ~ 50% decrease of α,β and γENaC mRNA expression and an 80% reduction of ENaC short-circuit current (Isc) at 6 h. Scratching the cell monolayer generated a Ca2+ wave that spread from the margin of the scratch to distant cells. Pretreatment with BAPTA-AM, an intracellular Ca2+ chelator, abolished the effect of mechanical wounding and EDTA on αENaC mRNA expression, suggesting that [Ca2+]i is important for this modulation. We tested the hypothesis that a mechanosensitive channel such as TRPV4, a cationic channel known to increase [Ca2+]i, could mediate this effect. Activation of the channel with the TRPV4 specific agonist GSK-1016790A (GSK) decreased αENAC mRNA expression and almost completely abolished ENaC Isc. Pretreatment of alveolar epithelial cells with HC-067047 (HC0), a specific TRPV4 antagonist, reduced the extent of αENAC mRNA downregulation by mechanical wounding and EDTA. Altogether, our results suggest that mechanical stress induced by wounding or TRPV4-mediated loss of tight junction increases [Ca2+]i and elicits a Ca2+ wave that affects ENaC expression and function away from the site of injury. These data are important to better understand how Ca2+ signaling affects lung liquid clearance in injured lungs.
Collapse
Affiliation(s)
- André Dagenais
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada.
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada.
| | - Julie Desjardins
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Waheed Shabbir
- Institute of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Antoine Roy
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Dominic Filion
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
| | - Rémy Sauvé
- Département de pharmacologie et physiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Berthiaume
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montreal, Quebec, H2W 1R7, Canada
- Département de médecine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018; 11:E48. [PMID: 29772843 PMCID: PMC6027473 DOI: 10.3390/ph11020048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby "re-program" and "misuse" the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Fels
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| |
Collapse
|
16
|
Pharmacological activation of TRPV4 produces immediate cell damage and induction of apoptosis in human melanoma cells and HaCaT keratinocytes. PLoS One 2018; 13:e0190307. [PMID: 29293584 PMCID: PMC5749757 DOI: 10.1371/journal.pone.0190307] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022] Open
Abstract
Background TRPV4 channels are calcium-permeable cation channels that are activated by several physicochemical stimuli. Accordingly, TRPV4 channels have been implicated in the regulation of osmosensing, mechanotransduction, thermosensation, and epithelial/endothelial barrier functions. Whether TRPV4 is also mechanistically implicated in melanoma cell proliferation is not clear. Here, we hypothesized that TRPV4 is expressed in human melanoma and that pharmacological activation interferes with cell proliferation. Methodology/Principal findings TRPV4 functions were studied in melanoma cell lines (A375, SK-MEL-28, MKTBR), immortalized non-cancer keratinocytes (HaCaT), and murine 3T3 fibroblasts by patch-clamp, qRT-PCR, intracellular calcium measurements, cell proliferation, and flow cytometric assays of apoptosis and cell cycle. The selective TRPV4-activator, GSK1016790A, elicited non-selective cation currents with TRPV4-typical current-voltage-relationship in all cell lines. GSK1016790A-induced currents were blocked by the TRPV4-blocker, HC067047. TRPV4 mRNA expression was demonstrated by qRT-PCR. In A375 cells, TRPV4 activation was frequently paralleled by co-activation of calcium/calmodulin-regulated KCa3.1 channels. Light microscopy showed that TRPV4-activation produced rapid cellular disarrangement, nuclear densification, and detachment of a large fraction of all melanoma cell lines and HaCaT cells. TRPV4-activation induced apoptosis and drastically inhibited A375 and HaCaT proliferation that could be partially prevented by HC067047. Conclusions/Significance Our study showed that TRPV4 channels were functionally expressed in human melanoma cell lines and in human keratinocytes. Pharmacological TRPV4 activation in human melanoma cells and keratinocytes caused severe cellular disarrangement, necrosis and apoptosis. Pharmacological targeting of TRPV4 could be an alternative or adjuvant therapeutic strategy to treat melanoma progression and other proliferative skin disorders.
Collapse
|
17
|
Abstract
The microvasculature plays a central role in the pathophysiology of hemorrhagic shock and is also involved in arguably all therapeutic attempts to reverse or minimize the adverse consequences of shock. Microvascular studies specific to hemorrhagic shock were reviewed and broadly grouped depending on whether data were obtained on animal or human subjects. Dedicated sections were assigned to microcirculatory changes in specific organs, and major categories of pathophysiological alterations and mechanisms such as oxygen distribution, ischemia, inflammation, glycocalyx changes, vasomotion, endothelial dysfunction, and coagulopathy as well as biomarkers and some therapeutic strategies. Innovative experimental methods were also reviewed for quantitative microcirculatory assessment as it pertains to changes during hemorrhagic shock. The text and figures include representative quantitative microvascular data obtained in various organs and tissues such as skin, muscle, lung, liver, brain, heart, kidney, pancreas, intestines, and mesentery from various species including mice, rats, hamsters, sheep, swine, bats, and humans. Based on reviewed findings, a new integrative conceptual model is presented that includes about 100 systemic and local factors linked to microvessels in hemorrhagic shock. The combination of systemic measures with the understanding of these processes at the microvascular level is fundamental to further develop targeted and personalized interventions that will reduce tissue injury, organ dysfunction, and ultimately mortality due to hemorrhagic shock. Published 2018. Compr Physiol 8:61-101, 2018.
Collapse
Affiliation(s)
- Ivo Torres Filho
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, USA
| |
Collapse
|
18
|
Matsumoto K, Yamaba R, Inoue K, Utsumi D, Tsukahara T, Amagase K, Tominaga M, Kato S. Transient receptor potential vanilloid 4 channel regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 2017; 175:84-99. [PMID: 29053877 DOI: 10.1111/bph.14072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/14/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel involved in physical sensing in various tissue types. The present study aimed to elucidate the function and expression of TRPV4 channels in colonic vascular endothelial cells during dextran sulphate sodium (DSS)-induced colitis. EXPERIMENTAL APPROACH The role of TRPV4 channels in the progression of colonic inflammation was examined in a murine DSS-induced colitis model using immunohistochemical analysis, Western blotting and Evans blue dye extrusion assay. KEY RESULTS DSS-induced colitis was significantly attenuated in TRPV4-deficient (TRPV4 KO) as compared to wild-type mice. Repeated intrarectal administration of GSK1016790A, a TRPV4 agonist, exacerbated the severity of DSS-induced colitis. Bone marrow transfer experiments demonstrated the important role of TRPV4 in non-haematopoietic cells for DSS-induced colitis. DSS treatment up-regulated TRPV4 expression in the vascular endothelia of colonic mucosa and submucosa. DSS treatment increased vascular permeability, which was abolished in TRPV4 KO mice. This DSS-induced increase in vascular permeability was further enhanced by i.v. administration of GSK1016790A, and this effect was abolished by the TRPV4 antagonist RN1734. TRPV4 was co-localized with vascular endothelial (VE)-cadherin, and VE-cadherin expression was decreased by repeated i.v. administration of GSK1016790A during colitis. Furthermore, GSK106790A decreased VE-cadherin expression in mouse aortic endothelial cells exposed to TNF-α. CONCLUSION AND IMPLICATIONS These findings indicate that an up-regulation of TRPV4 channels in vascular endothelial cells contributes to the progression of colonic inflammation by increasing vascular permeability. Thus, TRPV4 is an attractive target for the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Riho Yamaba
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ken Inoue
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Takuya Tsukahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Japan
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
19
|
Bulk E, Kramko N, Liashkovich I, Glaser F, Schillers H, Schnittler HJ, Oberleithner H, Schwab A. K Ca3.1 channel inhibition leads to an ICAM-1 dependent increase of cell-cell adhesion between A549 lung cancer and HMEC-1 endothelial cells. Oncotarget 2017; 8:112268-112282. [PMID: 29348824 PMCID: PMC5762509 DOI: 10.18632/oncotarget.22735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Early metastasis leads to poor prognosis of lung cancer patients, whose 5-year survival rate is only 15%. We could recently show that the Ca2+ sensitive K+ channel KCa3.1 promotes aggressive behavior of non-small cell lung cancer (NSCLC) cells and that it can serve as a prognostic marker in NSCLC. Since NSCLC patients die of metastases, we investigated whether KCa3.1 channels contribute to poor patient prognosis by regulating distinct steps of the metastatic cascade. We investigated the extravasation of NSCLC cells and focused on their adhesion to endothelial cells and on transendothelial migration. We quantified the adhesion forces between NSCLC cells and endothelial cells by applying single cell force spectroscopy, and we monitored transendothelial migration using live-cell imaging. Inhibition of KCa3.1 channels with senicapoc or KCa3.1 silencing increases the adhesion force of A549 lung cancer cells to human microvascular endothelial cells (HMEC-1). Western blotting, immunofluorescence staining and biotinylation assays indicate that the elevated adhesion force is due to increased expression of ICAM-1 in both cell lines when KCa3.1 channels are downregulated. Consistent with this interpretation, an anti-ICAM-1 blocking antibody abolishes the KCa3.1-dependent increase in adhesion. Senicapoc inhibits transendothelial migration of A549 cells by 50%. Selectively silencing KCa3.1 channels in either NSCLC or endothelial cells reveals that transendothelial migration depends predominantly on endothelial KCa3.1 channels. In conclusion, our findings disclose a novel function of KCa3.1 channels in cancer. KCa3.1 channels regulate ICAM-1 dependent cell-cell adhesion between endothelial and cancer cells that affects the transmigration step of the metastatic cascade.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Nadzeya Kramko
- Institute of Anatomy and Vascular Biology, University of Muenster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Felix Glaser
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Hermann Schillers
- Institute of Physiology II, University of Muenster, Münster, Germany
| | | | - Hans Oberleithner
- Institute of Physiology II, University of Muenster, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Muenster, Münster, Germany
| |
Collapse
|
20
|
Yi M, Wei T, Wang Y, Lu Q, Chen G, Gao X, Geller HM, Chen H, Yu Z. The potassium channel KCa3.1 constitutes a pharmacological target for astrogliosis associated with ischemia stroke. J Neuroinflammation 2017; 14:203. [PMID: 29037241 PMCID: PMC5644250 DOI: 10.1186/s12974-017-0973-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Background Reactive astrogliosis is one of the significantly pathological features in ischemic stroke accompanied with changes in gene expression, morphology, and proliferation. KCa3.1 was involved in TGF-β-induced astrogliosis in vitro and also contributed to astrogliosis-mediated neuroinflammation in neurodegeneration disease. Methods Wild type mice and KCa3.1−/− mice were subjected to permanent middle cerebral artery occlusion (pMCAO) to evaluate the infarct areas by 2,3,5-triphenyltetrazolium hydrochloride staining and neurological deficit. KCa3.1 channels expression and cell localization in the brain of pMCAO mice model were measured by immunoblotting and immunostaining. Glia activation and neuron loss was measured by immunostaining. DiBAC4 (3) and Fluo-4AM were used to measure membrane potential and cytosolic Ca2+ level in oxygen-glucose deprivation induced reactive astrocytes in vitro. Results Immunohistochemistry on pMCAO mice infarcts showed strong upregulation of KCa3.1 immunoreactivity in reactive astrogliosis. KCa3.1−/− mice exhibited significantly smaller infarct areas on pMCAO and improved neurological deficit. Both activated gliosis and neuronal loss were attenuated in KCa3.1−/− pMCAO mice. In the primary cultured astrocytes, the expressions of KCa3.1 and TRPV4 were increased associated with upregulation of astrogliosis marker GFAP induced by oxygen-glucose deprivation. The activation of KCa3.1 hyperpolarized membrane potential and, by promoting the driving force for calcium, induced calcium entry through TRPV4, a cation channel of the transient receptor potential family. Double-labeled staining showed that KCa3.1 and TRPV4 channels co-localized in astrocytes. Blockade of KCa3.1 or TRPV4 inhibited the phenotype switch of reactive astrogliosis. Conclusions Our data suggested that KCa3.1 inhibition might represent a promising therapeutic strategy for ischemia stroke. Electronic supplementary material The online version of this article (10.1186/s12974-017-0973-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengni Yi
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianjiao Wei
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanxia Wang
- Experimental Teaching Center of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qin Lu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gaoxian Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Herbert M Geller
- Developmental Neurobiology Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhihua Yu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
21
|
Comerma-Steffensen SG, Carvacho I, Hedegaard ER, Simonsen U. Small and Intermediate Calcium-Activated Potassium Channel Openers Improve Rat Endothelial and Erectile Function. Front Pharmacol 2017; 8:660. [PMID: 28993731 PMCID: PMC5619997 DOI: 10.3389/fphar.2017.00660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
Modulation of endothelial calcium-activated potassium (KCa) channels has been proposed as an approach to restore endothelial function. The present study investigated whether novel openers of KCa channels with small (KCa2.x) and intermediate (KCa3.1) conductance, NS309 and NS4591, improve endothelium-dependent relaxation and erectile function. Rat corpus cavernosum (CC) strips were mounted for isometric tension recording and processed for immunoblotting. Mean arterial pressure (MAP), intracavernosal pressure (ICP), and electrocardiographic (ECG) measurements were conducted in anesthetized rats. Immunoblotting revealed the presence of KCa2.3 and large KCa conductance (KCa1.1) channels in the corpus cavernosum. NS309 and NS4591 increased current in CC endothelial cells in whole cell patch clamp experiments. Relaxation induced by NS309 (<1 μM) was inhibited by endothelial cell removal and high extracellular potassium. An inhibitor of nitric oxide (NO) synthase, and blockers of KCa2.x and KCa1.1 channels, apamin and iberiotoxin also inhibited NS309 relaxation. Incubation with NS309 (0.5 μM) markedly enhanced acetylcholine relaxation. Basal erectile function (ICP/MAP) increased during administration of NS309. Increases in ICP/MAP after cavernous nerve stimulation with NS309 were unchanged, whereas NS4591 significantly improved erectile function. Administration of NS309 and NS4591 caused small changes in the electrocardiogram, but neither arrhythmic events nor prolongation of the QTc interval were observed. The present study suggests that openers of KCa2.x and KCa3.1 channels improve endothelial and erectile function. The effects of NS309 and NS4591 on heart rate and ECG are small, but will require additional safety studies before evaluating whether activation of KCa2.3 channels has a potential for treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Simon G. Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus UniversityAarhus, Denmark
- Animal Physiology, Department of Biomedical Sciences, Veterinary Sciences Faculty, Central University of VenezuelaMaracay, Venezuela
| | - Ingrid Carvacho
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus UniversityAarhus, Denmark
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del MauleTalca, Chile
| | - Elise R. Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus UniversityAarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
22
|
Yu Z, Wang Y, Qin L, Chen H. Functional Cooperation between KCa3.1 and TRPV4 Channels in Bronchial Smooth Muscle Cell Proliferation Associated with Chronic Asthma. Front Pharmacol 2017; 8:559. [PMID: 28970794 PMCID: PMC5609593 DOI: 10.3389/fphar.2017.00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
Abstract
Airway smooth muscle cells (SMC) proliferation contributes to the airways remodeling and irreversible airway obstruction during severe asthma, but the mechanisms of airway SMC proliferation are poorly understood. Intracellular Ca2+ levels play an important role in regulating cell proliferation. We have previously reported KCa3.1 channels regulated human bronchial smooth muscle (HBSM) cells proliferation via the Ca2+ influx as a consequence of membrane hyperpolarization. However, the role of potassium channels KCa3.1 in airway remodeling as well as the mechanism for extracellular Ca2+ influx induced by the activation of KCa3.1 remains unknown. Here we demonstrated that KCa3.1 channels deficiency attenuated airway remodeling, airway inflammation, and airway hyperresponsiveness (AHR) in a mouse model of chronic asthma. The gene expressions of repressor element 1-silencing transcription factor (REST) and c-Jun, two transcriptional regulators of KCa3.1 channels, were correlated negatively or positively with KCa3.1 channels expressions both in vivo and in vitro using real-time PCR and Western blot analyses. RNAi-mediated knockdown or pharmacological blockade of KCa3.1 and TRPV4 significantly attenuated HBSM cells proliferation. Using confocal imaging and custom data analysis software, blockade of TRPV4 decreased the Ca2+ influx induced by 1-EBIO-mediated KCa3.1 activation. Double-labeled staining showed that KCa3.1 and TRPV4 channels colocalized in HBSM cells. These results demonstrate that KCa3.1 channels regulate the proliferation phenotype of HBSM cells via TRPV4 channels in the process of chronic asthma, making it a potential therapeutic target to treat chronic asthma.
Collapse
Affiliation(s)
- Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yanxia Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lu Qin
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
23
|
Comerma-Steffensen S, Kun A, Hedegaard ER, Mogensen S, Aalkjaer C, Köhler R, Mønster Christensen B, Simonsen U. Down-regulation of K Ca2.3 channels causes erectile dysfunction in mice. Sci Rep 2017. [PMID: 28630432 PMCID: PMC5476588 DOI: 10.1038/s41598-017-04188-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Modulation of endothelial calcium-activated K+ channels has been proposed as an approach to restore arterial endothelial cell function in disease. We hypothesized that small-conductance calcium-activated K+ channels (KCa2.3 or SK3) contributes to erectile function. The research was performed in transgenic mice with overexpression (KCa2.3T/T(−Dox)) or down-regulation (KCa2.3T/T(+Dox)) of the KCa2.3 channels and wild-type C57BL/6-mice (WT). QPCR revealed that KCa2.3 and KCa1.1 channels were the most abundant in mouse corpus cavernosum. KCa2.3 channels were found by immunoreactivity and electron microscopy in the apical-lateral membrane of endothelial cells in the corpus cavernosum. Norepinephrine contraction was enhanced in the corpus cavernosum of KCa2.3T/T(+Dox)versus KCa2.3T/T(−Dox) mice, while acetylcholine relaxation was only reduced at 0.3 µM and relaxations in response to the nitric oxide donor sodium nitroprusside were unaltered. An opener of KCa2 channels, NS309 induced concentration-dependent relaxations of corpus cavernosum. Mean arterial pressure was lower in KCa2.3T/T(−Dox) mice compared with WT and KCa2.3T/T(+Dox) mice. In anesthetized mice, cavernous nerve stimulation augmented in frequency/voltage dependent manner erectile function being lower in KCa2.3T/T(+Dox) mice at low frequencies. Our findings suggest that down-regulation of KCa2.3 channels contributes to erectile dysfunction, and that pharmacological activation of KCa2.3 channels may have the potential to restore erectile function.
Collapse
Affiliation(s)
- Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.
| | - Attila Kun
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Elise R Hedegaard
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | | | - Ralf Köhler
- Aragon Agency for Investigation and Development (ARAID), Translational Research Unit, Miguel Servet University Hospital, Zaragoza, Spain
| | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
25
|
Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:117-139. [PMID: 28528666 DOI: 10.1016/bs.apha.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) ion channels are important signaling components in nociceptive and inflammatory pathways. This is attributed to their ability to function as polymodal sensors of environmental stimuli (chemical and mechanical) and as effector molecules in receptor signaling pathways. TRP vanilloid 4 (TRPV4) is a nonselective cation channel that is activated by multiple endogenous stimuli including shear stress, membrane stretch, and arachidonic acid metabolites. TRPV4 contributes to many important physiological processes and dysregulation of its activity is associated with chronic conditions of metabolism, inflammation, peripheral neuropathies, musculoskeletal development, and cardiovascular regulation. Mechanosensory and receptor- or lipid-mediated signaling functions of TRPV4 have historically been attributed to central and peripheral neurons. However, with the development of potent and selective pharmacological tools, transgenic mice and improved molecular and imaging techniques, many new roles for TRPV4 have been revealed in nonneuronal cells. In this chapter, we discuss these recent findings and highlight the need for greater characterization of TRPV4-mediated signaling in nonneuronal cell types that are either directly associated with neurons or indirectly control their excitability through release of sensitizing cellular factors. We address the integral role of these cells in sensory and inflammatory processes as well as their importance when considering undesirable on-target effects that may be caused by systemic delivery of TRPV4-selective pharmaceutical agents for treatment of chronic diseases. In future, this will drive a need for targeted drug delivery strategies to regulate such a diverse and promiscuous protein.
Collapse
|
26
|
Simonsen U, Wandall-Frostholm C, Oliván-Viguera A, Köhler R. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse. Acta Physiol (Oxf) 2017; 219:176-187. [PMID: 27497091 DOI: 10.1111/apha.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/30/2015] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
It has been suggested that the transient receptor potential cation (TRP) channel subfamily V (vanilloid) type 4 (TRPV4) and intermediate conductance calcium-activated potassium (KCa3.1) channels contribute to endothelium-dependent vasodilation. Here, we summarize very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung disease. Among the endothelial Ca2+ -permeable TRPs, TRPV4 is best characterized and produces arterial dilation by stimulating Ca2+ -dependent nitric oxide synthesis and endothelium-dependent hyperpolarization. Besides these roles, some TRP channels control endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl- and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure and chemically induced lung injury, may lead to activation of TRPV4 channels followed by Ca2+ influx leading to activation of KCa3.1 channels in endothelial cells ultimately leading to acute lung injury. We find that a deficiency in KCa3.1 channels protects against TRPV4-induced pulmonary arterial relaxation, fluid extravasation, haemorrhage, pulmonary circulatory collapse and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4 signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation and pulmonary circulatory collapse.
Collapse
Affiliation(s)
- U. Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - C. Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - A. Oliván-Viguera
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| | - R. Köhler
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| |
Collapse
|
27
|
Köhler R, Oliván-Viguera A, Wulff H. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. ADVANCES IN PHARMACOLOGY 2016; 77:65-104. [DOI: 10.1016/bs.apha.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|