1
|
Martynov A, Farber B, Bomko T, Beckles DL, Kleyn I. Molecular Modeling, Synthesis, and Antihyperglycemic Activity of the New Benzimidazole Derivatives - Imidazoline Receptor Agonists. Drug Des Devel Ther 2024; 18:1035-1052. [PMID: 38585255 PMCID: PMC10999201 DOI: 10.2147/dddt.s447289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The paper presents the results of a study on the first synthesized benzimidazole derivatives obtained from labile nature carboxylic acids. The synthesis conditions of these substances were studied, their structure was proved, and some components were found to have sugar-reducing activity on the model of alloxan diabetes in rats. Methods The study used molecular modeling methods such as docking based on the evolutionary model (igemdock), RP_HPLC method to monitor the synthesis reaction, and 1H NMR and 13C NMR, and other methods of organic chemistry to confirm the structures of synthesized substances. Results & Discussion The docking showed that the ursodeoxycholic acid benzimidazole derivatives have high tropics to all imidazoline receptor carriers (PDB ID: 2XCG, 2bk3, 3p0c, 1QH4). The ursodeoxycholic acid benzimidazole derivative and arginine and histidine benzimidazole derivatives showed the highest sugar-lowering activity in the experiment on alloxan-diabetic rats. For these derivatives, the difference in glucose levels of treated rats was significant against untreated control. Therefore, the new derivatives of benzimidazole and labile natural organic acids can be used to create new classes of imidazoline receptor inhibitors for the treatment of diabetes mellitus and hypertension.
Collapse
Affiliation(s)
- Artur Martynov
- Laboratory and Clinical department of Molecular Immunopharmacology, SI “ I. Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | | | - Tatyana Bomko
- Laboratory and Clinical department of Molecular Immunopharmacology, SI “ I. Mechnikov Institute of Microbiology and Immunology of National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | | | - Ilya Kleyn
- SUNY Downstate Medical Center / University Hospital of Brooklyn, New York, NY, USA
| |
Collapse
|
2
|
Siemian JN, Woodhouse K, Liu DH, Zhang Y, Li JX. The imidazoline I 2 receptor agonist 2-BFI reduces abuse-related effects of morphine: self-administration and drug discrimination. Psychopharmacology (Berl) 2024; 241:479-487. [PMID: 38159161 PMCID: PMC11955926 DOI: 10.1007/s00213-023-06524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
RATIONALE Increasing evidence shows that imidazoline I2 receptor agonists enhance opioid-induced analgesia, suggesting that the combination of I2 receptor agonists with opioids could be a favorable strategy for pain control. However, the effect of I2 receptor agonists on the abuse liability of opioids is unknown. This study examined the impact of the I2 receptor agonist 2-BFI on some abuse-related behavioral effects of the opioid morphine in rats. OBJECTIVES The von Frey filament test was used to determine the antinociceptive effects of 2-BFI (intravenous, i.v.) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. IV self-administration was used to assess the reinforcing effects of 2-BFI alone and to assess the effects of non-contingent injections of 2-BFI (i.p.) on morphine self-administration. A two-lever drug discrimination paradigm in which rats were trained to discriminate 3.2 mg/kg morphine (i.p.) from saline was used to examine whether 2-BFI or another I2 receptor agonist 2-(4,5-dihydroimidazol-2-yl)quinoline hydrochloride (BU224) affected the discriminative stimulus effects of morphine. RESULTS 2-BFI could not maintain reliable self-administration behavior in rats with no pain or CFA-treated inflammatory pain. However, pretreatment with 2-BFI (i.p.) produced dose-dependent decreases in the dose-effect curve of morphine self-administration. Both 2-BFI and BU224 did not substitute for morphine but significantly attenuated the discriminative stimulus effects of morphine. CONCLUSIONS These results suggest that I2 receptor agonists do not enhance, but in fact appear to decrease, the abuse liability of opioids, further supporting the potential utility of I2 receptor agonist-opioid combination therapy for pain control.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kristen Woodhouse
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
3
|
Zhao MJ, Wang MY, Ma L, Ahmad KA, Wang YX. Bulleyaconitine A Inhibits Morphine-Induced Withdrawal Symptoms, Conditioned Place Preference, and Locomotor Sensitization Via Microglial Dynorphin A Expression. Front Pharmacol 2021; 12:620926. [PMID: 33716748 PMCID: PMC7953057 DOI: 10.3389/fphar.2021.620926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022] Open
Abstract
Bulleyaconitine A (BAA), a C19-diterpenoid alkaloid, has been prescribed as a nonnarcotic analgesic to treat chronic pain over four decades in China. The present study investigated its inhibition in morphine-induced withdrawal symptoms, conditioned place preference (CPP) and locomotor sensitization, and then explored the underlying mechanisms of actions. Multiple daily injections of morphine but not BAA up to 300 μg/kg/day into mice evoked naloxone-induced withdrawal symptoms (i.e., shakes, jumps, genital licks, fecal excretion and body weight loss), CPP expression, and locomotor sensitization. Single subcutaneous BAA injection (30–300 μg/kg) dose-dependently and completely attenuated morphine-induced withdrawal symptoms, with ED50 values of 74.4 and 105.8 μg/kg in shakes and body weight loss, respectively. Subcutaneous BAA (300 μg/kg) also totally alleviated morphine-induced CPP acquisition and expression and locomotor sensitization. Furthermore, subcutaneous BAA injection also specifically stimulated dynorphin A expression in microglia but not astrocytes or neurons in nucleus accumbens (NAc) and hippocampal, measured for gene and protein expression and double immunofluorescence staining. In addition, subcutaneous BAA-inhibited morphine-induced withdrawal symptoms and CPP expression were totally blocked by the microglial metabolic inhibitor minocycline, dynorphin A antiserum, or specific KOR antagonist GNTI, given intracerebroventricularly. These results, for the first time, illustrate that BAA attenuates morphine-induced withdrawal symptoms, CPP expression, and locomotor sensitization by stimulation of microglial dynorphin A expression in the brain, suggesting that BAA may be a potential candidate for treatment of opioids-induced physical dependence and addiction.
Collapse
Affiliation(s)
- Meng-Jing Zhao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Mi-Ya Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Le Ma
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Khalil Ali Ahmad
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai, China
| |
Collapse
|
4
|
Sala E, Ferrari F, Lanza M, Milia C, Sabatini C, Bonazzi A, Comi E, Borsi Franchini M, Caselli G, Rovati LC. Improved efficacy, tolerance, safety, and abuse liability profile of the combination of CR4056 and morphine over morphine alone in rodent models. Br J Pharmacol 2020; 177:3291-3308. [PMID: 32154915 PMCID: PMC7312436 DOI: 10.1111/bph.15049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Prolonged use of opioids causes analgesic tolerance and adverse effects including constipation and dependence. Compounds targeting imidazoline I2 receptors are known to potentiate opioid analgesia in rodents. We investigated whether combination with the I2 receptor ligand CR4056 could improve efficacy and safety of morphine and explored the mechanisms of the CR4056-opioid interaction. EXPERIMENTAL APPROACH We used the complete Freund's adjuvant (CFA) model in rats to study the effects of treatments on hyperalgesia, morphine tolerance and microglia activation as measured by immunofluorescence. Opioid-induced adverse effects were assessed in rodent models of morphine-induced constipation, sedation (open field, sedation rating scale, and rotarod), physical dependence (naloxone-induced withdrawal), and abuse (conditioned place preference-associated reward). Chemiluminescence assays tested CR4056 as allosteric modulator of μ-opioid receptors. KEY RESULTS CR4056 (ED50 = 4.88 mg·kg-1 ) and morphine (ED50 = 2.07 mg·kg-1 ) synergized in reducing CFA-induced hyperalgesia (ED50 = 0.52 mg·kg-1 ; 1:1 combination). Consistently, low doses of CR4056 (1 mg·kg-1 ) spared one third of the cumulative morphine dose administered during 4 days and prevented/reversed the development of tolerance to morphine anti-hyperalgesia. These opioid-sparing effects were associated with decreased activation of microglia, independent of CR4056 interactions on μ-opioid receptors. Importantly, the low doses of CR4056 and morphine that synergize in analgesia did not induce constipation, sedation, physical dependence, or place preference. CONCLUSION AND IMPLICATIONS We showed selective synergism between CR4056 and morphine as analgesics. Their combination showed an improved safety and abuse liability profile over morphine alone. CR4056 could be developed as an opioid-sparing drug in multimodal analgesia.
Collapse
Affiliation(s)
- Emanuele Sala
- Rottapharm BiotechMonzaItaly
- PhD program in NeuroscienceUniversity of Milano‐BicoccaMonzaItaly
| | | | | | - Chiara Milia
- School of Medicine and SurgeryUniversity of Milano ‐ BicoccaMonzaItaly
| | - Chiara Sabatini
- Rottapharm BiotechMonzaItaly
- PhD program in NeuroscienceUniversity of Milano‐BicoccaMonzaItaly
| | | | | | | | | | | |
Collapse
|
5
|
Harun N, Johari IS, Mansor SM, Shoaib M. Assessing physiological dependence and withdrawal potential of mitragynine using schedule-controlled behaviour in rats. Psychopharmacology (Berl) 2020; 237:855-867. [PMID: 31832720 DOI: 10.1007/s00213-019-05418-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Abstract
RATIONALE Kratom is proposed to exhibit therapeutic potential as an opium substitute, but little is known about its dependence-producing profile, particularly of its main psychoactive compound, mitragynine (MG). OBJECTIVES This study examined the dependence-producing effects of MG using operant-scheduled behaviour in rats and investigated the potential therapeutic effect of MG by comparing effects to buprenorphine in morphine-dependent rats using the same schedule-controlled behavioural task. METHODS The effects of acutely administered MG and morphine were determined in rats trained to respond under fixed-ratio (FR) 10 schedule of food reinforcement. Next, the rats were administered MG and morphine twice daily for 14 consecutive days to determine if physiological dependence would develop by examining cessation of drug treatment and following antagonist-precipitated withdrawal. The study then examined the effects of MG substitution to suppress naloxone-precipitated morphine withdrawal effects on scheduled responding. RESULTS Acute doses of MG did not produce dose-related decreases on FR schedules of responding compared to morphine. Unlike morphine, MG-treated rats showed no suppression of response rates following cessation of MG treatment. However, withdrawal effects were evident for MG after precipitation by either naloxone or SR141716A (rimonabant), similar to morphine-treated rats. MG in higher doses (10 and 30 mg/kg) attenuated the naloxone-precipitated morphine withdrawal effects while smaller doses of buprenorphine (0.3 and 1.0 mg/kg) were necessary to alleviate these effects. CONCLUSION The findings suggest that MG does not induce physiological dependence but can alleviate the physical symptoms associated with morphine withdrawal which represent the desired characteristics of novel pharmacotherapeutic interventions for managing opioid use disorder (OUD).
Collapse
Affiliation(s)
- Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia.
| | - Illa Syafiqah Johari
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Sharif Mahsufi Mansor
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Gelugor, Malaysia
| | - Mohammed Shoaib
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
6
|
Rovati LC, Brambilla N, Blicharski T, Connell J, Vitalini C, Bonazzi A, Giacovelli G, Girolami F, D'Amato M. Efficacy and safety of the first-in-class imidazoline-2 receptor ligand CR4056 in pain from knee osteoarthritis and disease phenotypes: a randomized, double-blind, placebo-controlled phase 2 trial. Osteoarthritis Cartilage 2020; 28:22-30. [PMID: 31526875 DOI: 10.1016/j.joca.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/09/2019] [Accepted: 09/01/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE CR4056 is a selective imidazoline-2 (I2) receptor ligand with potent analgesic activity in animal pain models. This proof-of-concept study tested CR4056 efficacy and safety in patients with knee osteoarthritis (OA) and different phenotypes. DESIGN This is a multicenter, randomized, double-blind, placebo-controlled trial. Knee OA patients with moderate to severe pain received CR4056 (women 100 mg bid; men 200 mg bid) or placebo (both genders) for 14 days. The primary outcome was the change in WOMAC pain score (0-100 scale) compared to placebo, analyzed in the intention-to-treat population and pre-defined OA phenotypes. RESULTS 213 patients were treated with CR4056 (92 women; 52 men) or placebo (69 overall). After 14 days, median WOMAC pain improvements were 10 points on placebo and 14, 20 and 16 in women, men, and pooled CR4056 groups (P = 0.184, 0.030 and 0.070 vs placebo, respectively). Pre-specified subgroup analysis in the metabolic OA phenotype (BMI ≥ 27.5 kg/m2, N = 156) showed statistically significant differences in all CR4056-treated groups vs placebo of 12-18 points. Conversely, there were too few patients with a neuropathic or inflammatory phenotype for a meaningful analysis. CR4056 was well tolerated; the most common adverse event was mild headache. CONCLUSIONS Although the primary endpoint was met in males only, this exploratory phase 2 trial shows that CR4056 might be an effective analgesic against knee OA pain, especially in overweight patients representing the metabolic OA phenotype. These findings, along with the broad-spectrum analgesic activity of CR4056 in animal models, warrant further clinical investigation in OA and other pain conditions. CLINICAL TRIAL REGISTRATION NUMBER EudraCT 2015-001136-37.
Collapse
Affiliation(s)
- L C Rovati
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| | - N Brambilla
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| | | | - J Connell
- MAC Clinical Research, Manchester, UK.
| | - C Vitalini
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| | - A Bonazzi
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| | - G Giacovelli
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| | - F Girolami
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| | - M D'Amato
- Rottapharm Biotech, Via Valosa di Sopra 9, I-20900, Monza, MB, Italy.
| |
Collapse
|
7
|
Bousquet P, Hudson A, García-Sevilla JA, Li JX. Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacol Rev 2020; 72:50-79. [PMID: 31819014 DOI: 10.1124/pr.118.016311] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Imidazoline receptors historically referred to a family of nonadrenergic binding sites that recognize compounds with an imidazoline moiety, although this has proven to be an oversimplification. For example, none of the proposed endogenous ligands for imidazoline receptors contain an imidazoline moiety but they are diverse in their chemical structure. Three receptor subtypes (I1, I2, and I3) have been proposed and the understanding of each has seen differing progress over the decades. I1 receptors partially mediate the central hypotensive effects of clonidine-like drugs. Moxonidine and rilmenidine have better therapeutic profiles (fewer side effects) than clonidine as antihypertensive drugs, thought to be due to their higher I1/α 2-adrenoceptor selectivity. Newer I1 receptor agonists such as LNP599 [3-chloro-2-methyl-phenyl)-(4-methyl-4,5-dihydro-3H-pyrrol-2-yl)-amine hydrochloride] have little to no activity on α 2-adrenoceptors and demonstrate promising therapeutic potential for hypertension and metabolic syndrome. I2 receptors associate with several distinct proteins, but the identities of these proteins remain elusive. I2 receptor agonists have demonstrated various centrally mediated effects including antinociception and neuroprotection. A new I2 receptor agonist, CR4056 [2-phenyl-6-(1H-imidazol-1yl) quinazoline], demonstrated clear analgesic activity in a recently completed phase II clinical trial and holds great promise as a novel I2 receptor-based first-in-class nonopioid analgesic. The understanding of I3 receptors is relatively limited. Existing data suggest that I3 receptors may represent a binding site at the Kir6.2-subtype ATP-sensitive potassium channels in pancreatic β-cells and may be involved in insulin secretion. Despite the elusive nature of their molecular identities, recent progress on drug discovery targeting imidazoline receptors (I1 and I2) demonstrates the exciting potential of these compounds to elicit neuroprotection and to treat various disorders such as hypertension, metabolic syndrome, and chronic pain.
Collapse
Affiliation(s)
- Pascal Bousquet
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Alan Hudson
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jesús A García-Sevilla
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| | - Jun-Xu Li
- Faculty of Medicine, University of Strasbourg, Strasbourg, France (P.B.); Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada (A.H.); Laboratory of Neuropharmacology, University Research Institute on Health Sciences, University of the Balearic Islands, Palma de Malllorca, Spain (J.A.G.-S.); and Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.-X.L.)
| |
Collapse
|
8
|
Combining opioids and non-opioids for pain management: Current status. Neuropharmacology 2019; 158:107619. [PMID: 31029588 DOI: 10.1016/j.neuropharm.2019.04.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
Pain remains a global health challenge. For decades, clinicians have been primarily relying on μ-opioid receptor (MOR) agonists and nonsteroidal anti-inflammatory drugs (NSAIDs) for pain management. MOR agonists remain the most efficacious analgesics available; however, adverse effects related to MOR agonists use are severe which often lead to forced drug discontinuation and inadequate pain relief. The recent opioid overdose epidemic urges the development of safer analgesics. Combination therapy is a well-established clinical pharmacotherapeutic strategy for the treatment of various clinical disorders. The combination of MOR agonists with non-MOR agonists may increase the analgesic potency of MOR agonists, reduce the development of tolerance and dependence, reduce the diversion and abuse, overdose, and reduce other clinically significant side effects associated with prolonged opioid use such as constipation. Overall, the combination therapy approach could substantially improve the therapeutic profile of MOR agonists. This review summarizes some recent developments in this field. This article is part of the Special Issue entitled 'New Vistas in Opioid Pharmacology'.
Collapse
|
9
|
Chen HS, Gu LJ, Yang YX, Guo JY. GABA and 5-HT Systems Are Involved in the Anxiolytic Effect of Gan-Mai-Da-Zao Decoction. Front Neurosci 2019; 12:1043. [PMID: 30723393 PMCID: PMC6349943 DOI: 10.3389/fnins.2018.01043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022] Open
Abstract
The Gan-Mai-Da-Zao (GMDZ) decoction is one of the most famous Chinese medicine prescriptions to treat emotional diseases in China. Here we examined the anxiolytic-like effects of the GMDZ decoction in mice. The mice were orally administered with GMDZ decoction (1, 2, and 4 g/kg, respectively) for 7 days, diazepam (2 mg/kg, p.o.) and buspirone (5 mg/kg, p.o.) were used as positive controls. Then, elevated plus maze (EPM) test, light/dark box (LDB) test, and marble burying (MB) test, open field (OF) test and rota-rod test were performed. We found that GMDZ treatment (2 and 4 g/kg) significantly increased the percentage of open arm entries and time spent on the open arms in EPM as compared to the control. GMDZ treatment also significantly increased the time spent in the light box and the number of light box entries in LDB and reduced the number of marbles buried in MB. Similarly to those observed with diazepam and buspirone. In contrast, GMDZ did not affect the locomotor activity in the OF and motor coordination in the rota-rod test. Furthermore, the anxiolytic-like effects induced by GMDZ were inhibited by the γ-aminobutyric acid-A (GABAA) receptor antagonist flumazenil and 5-hydroxytryptamine-1A (5-HT1A) receptor antagonist WAY-100635. These results showed that GMDZ possesses anxiolytic-like effects in animal models, and its mechanism of action might be modulated by 5-HT1A and GABAA receptors.
Collapse
Affiliation(s)
- Hong-Shu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Li-Jia Gu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Jian-You Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| |
Collapse
|
10
|
Zhang Z, Yang JL, Zhang LL, Chen ZZ, Chen JO, Cao YG, Qu M, Lin XD, Ji XM, Han Z. 2-(2-Benzofuranyl)-2-imidazoline treatment within 5 hours after cerebral ischemia/reperfusion protects the brain. Neural Regen Res 2018; 13:2111-2118. [PMID: 30323139 PMCID: PMC6199951 DOI: 10.4103/1673-5374.241461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
Abstract
We previously demonstrated that administering 2-(2-benzofuranyl)-2-imidazolin (2-BFI), an imidazoline I2 receptor agonist, immediately after ischemia onset can protect the brain from ischemic insult. However, immediate administration after stroke is difficult to realize in the clinic. Thus, the therapeutic time window of 2-BFI should be determined. Sprague-Dawley rats provided by Wenzhou Medical University in China received right middle cerebral artery occlusion for 120 minutes, and were treated with 2-BFI (3 mg/kg) through the caudal vein at 0, 1, 3, 5, 7, and 9 hours after reperfusion. Neurological function was assessed using the Longa's method. Infarct volume was measured by 2,3,5-triphenyltetrazolium chloride assay. Morphological changes in the cortical penumbra were observed by hematoxylin-eosin staining under transmission electron microscopy . The apoptosis levels in the ipsilateral cortex were examined with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. The protein expression of Bcl-2 and BAX was detected using immunohistochemistry. We found the following: Treatment with 2-BFI within 5 hours after reperfusion obviously improved neurological function. Administering 2-BFI within 9 hours after ischemia/reperfusion decreased infarct volume and alleviated apoptosis. 2-BFI administration at different time points after reperfusion alleviated the pathological damage of the ischemic penumbra and reduced the number of apoptotic neurons, but the protective effect was more obvious when administered within 5 hours. Administration of 2-BFI within 5 hours after reperfusion remarkably increased Bcl-2 expression and decreased BAX expression. To conclude, 2-BFI shows potent neuroprotective effects when administered within 5 hours after reperfusion, seemingly by up-regulating Bcl-2 and down-regulating BAX expression. The time window provided clinical potential for ischemic stroke by 2-BFI.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin-Long Yang
- Department of Neurology, Shan Xian Central Hospital, Heze, Shandong Province, China
| | - Lin-Lei Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhen-Zhen Chen
- Department of Children Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jia-Ou Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yun-Gang Cao
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Man Qu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xin-Da Lin
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xun-Ming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhao Han
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Siemian JN, Wang K, Zhang Y, Li JX. Mechanisms of imidazoline I 2 receptor agonist-induced antinociception in rats: involvement of monoaminergic neurotransmission. Br J Pharmacol 2018; 175:1519-1534. [PMID: 29451703 DOI: 10.1111/bph.14161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/17/2017] [Accepted: 02/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Although the antinociceptive efficacies of imidazoline I2 receptor agonists have been established, the exact post-receptor mechanisms remain unknown. This study tested the hypothesis that monoaminergic transmission is critical for I2 receptor agonist-induced antinociception. EXPERIMENTAL APPROACH von Frey filaments were used to assess antinociceptive effects of two I2 receptor agonists, 2-BFI and CR4056 on chronic constriction injury (CCI)-induced neuropathic pain or complete Freund's adjuvant (CFA)-induced inflammatory pain in rats. Rectal temperature was measured to assess hypothermic effects of 2-BFI. A two-lever drug discrimination paradigm in which rats were trained to discriminate 5.6 mg·kg-1 2-BFI (i.p.) from its vehicle was used to examine the discriminative stimulus effects of 2-BFI. In each experiment, pharmacological mechanisms were investigated by combining 2-BFI or CR4056 with various pharmacological manipulations of the monoaminergic system including selective reuptake inhibition, monoamine depletion and monoamine receptor antagonism. KEY RESULTS In the CCI model, selective reuptake inhibitors of 5-HT (fluoxetine) or noradrenaline (desipramine), but not dopamine (GBR12909), enhanced 2-BFI-induced antinociception. Selective depletion of 5-HT or noradrenaline almost abolished 2-BFI-induced antinociception. 5-HT1A , 5-HT2A and α1 -adrenoceptor antagonists, but not other monoaminergic antagonists, attenuated 2-BFI and CR4056-induced antinociception in CCI and/or CFA models. However, none of these monoamine receptor antagonists significantly altered 2-BFI-induced hypothermia or discriminative stimulus effects. CONCLUSIONS AND IMPLICATIONS Antinociception induced by I2 receptor agonists was mediated by serotonergic and noradrenergic mechanisms with 5-HT1A , 5-HT2A and α1 -adrenoceptor being particularly important. In contrast, the hypothermic and discriminative stimulus effects of I2 receptor agonists were mediated by distinct, independent mechanisms.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Kaixuan Wang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA.,School of Pharmacy, Yantai University, Yantai, Shandong Province, China
| |
Collapse
|
12
|
Siemian JN, Jia S, Liu JF, Zhang Y, Li JX. Neuroanatomical characterization of imidazoline I 2 receptor agonist-induced antinociception. Eur J Neurosci 2018. [PMID: 29514408 DOI: 10.1111/ejn.13899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic pain is a significant public health problem with a lack of safe and effective analgesics. The imidazoline I2 receptor (I2 R) is a promising analgesic target, but the neuroanatomical structures involved in mediating I2 R-associated behaviors are unknown. I2 Rs are enriched in the arcuate nucleus, dorsal raphe (DR), interpeduncular nucleus, lateral mammillary body, medial habenula, nucleus accumbens (NAc) and paraventricular nucleus; thus, this study investigated the antinociceptive and hypothermic effects of microinjections of the I2 R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI). In rats, intra-DR microinjections produced antinociception in complete Freund's adjuvant- and chronic constriction injury-induced pain models. Intra-NAc microinjections produced antinociception and increased noxious stimulus-associated side time in a place escape/avoidance paradigm. Intra-NAc pretreatment with the I2 R antagonist idazoxan but not the D1 receptor antagonist SCH23390 or the D2 receptor antagonist raclopride attenuated intra-NAc 2-BFI-induced antinociception. Intra-NAc idazoxan did not attenuate systemically administered 2-BFI-induced antinociception. Microinjections into the other regions did not produce antinociception, and in none of the regions produced hypothermia. These data suggest that I2 R activation in some but not all I2 R-enriched brain regions is sufficient to produce antinociception and supports the theory that different I2 R-associated effects are mediated via distinct receptor populations, which may in turn be distributed differentially throughout the CNS.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 102 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Shushan Jia
- Department of Anesthesiology, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, China
| | - Jian-Feng Liu
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 102 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, 102 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| |
Collapse
|
13
|
Micheli L, Lucarini E, Corti F, Ciccocioppo R, Calò G, Rizzi A, Ghelardini C, Di Cesare Mannelli L. Involvement of the N/OFQ-NOP system in rat morphine antinociceptive tolerance: Are astrocytes the crossroad? Eur J Pharmacol 2018; 823:79-86. [PMID: 29378191 PMCID: PMC6064644 DOI: 10.1016/j.ejphar.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/05/2023]
Abstract
The development of tolerance to the antinociceptive effect is a main problem associated with the repeated administration of opioids. The progressively higher doses required to relieve pain reduce safety and exacerbate the side effects of classical opioid receptor agonists like morphine. Nociceptin/orphanin FQ (N/OFQ) and its NOP receptor constitute the fourth endogenous opioid system that is involved in the control of broad spectrum of biological functions, including pain transmission. Aim of this work was to evaluate the relevance of the N/OFQ-NOP system in morphine antinociceptive action and in the development of morphine tolerance in the rat. Continuous spinal intrathecal infusion of morphine (1-3 nmol/h) evoked analgesic effects for 5 days in wild type animals. The same doses infused in NOP(-/-) rats showed a lower analgesic efficacy, while the onset of tolerance was delayed to day 9. N/OFQ (1-3 nmol/h), continuously infused in NOP(+/+) animals, showed an analgesic profile similar to morphine. Immunohistochemical analysis of the dorsal horn of the spinal cord of morphine tolerant NOP(+/+) rats showed an increased number of Iba1- and GFAP-positive cells (microglia and astrocytes, respectively). Interestingly, microglia but not astrocyte activation was observed in NOP(-/-) morphine tolerant rat. A selective activation of astrocytes was observed in the dorsal horn of wild type N/OFQ tolerant rats. The antinociceptive effect of morphine partially depends by the N/OFQ-NOP system that participates in the development of morphine tolerance. In particular, NOP receptors are involved in morphine-induced astrocyte activation, and N/OFQ per se increases astrocyte density.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Francesca Corti
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Girolamo Calò
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Italy
| | - Anna Rizzi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
14
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Siemian JN, LaMacchia ZM, Spreuer V, Tian J, Ignatowski TA, Paez PM, Zhang Y, Li JX. The imidazoline I 2 receptor agonist 2-BFI attenuates hypersensitivity and spinal neuroinflammation in a rat model of neuropathic pain. Biochem Pharmacol 2018; 153:260-268. [PMID: 29366977 DOI: 10.1016/j.bcp.2018.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/18/2018] [Indexed: 11/25/2022]
Abstract
Chronic pain is a large, unmet public health problem. Recent studies have demonstrated the importance of neuroinflammation in the establishment and maintenance of chronic pain. However, pharmacotherapies that reduce neuroinflammation have not been successfully developed to treat chronic pain thus far. Several preclinical studies have established imidazoline I2 receptor (I2R) agonists as novel candidates for chronic pain therapies, and while some I2R ligands appear to modulate neuroinflammation in certain scenarios, whether they exert anti-neuroinflammatory effects in models of chronic pain is unknown. This study examined the effects of the prototypical I2R agonist 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) on hypersensitivity and neuroinflammation induced by chronic constriction injury (CCI), a neuropathic pain model in rats. In CCI rats, twice-daily treatment with 10 mg/kg 2-BFI for seven days consistently increased mechanical and thermal nociception thresholds, reduced GFAP and Iba-1 levels in the dorsal horn of the spinal cord, and reduced levels of TNF-α relative to saline treatment. These results were recapitulated in primary mouse cortical astrocyte cultures. Incubation with 2-BFI attenuated GFAP expression and supernatant TNF-α levels in LPS-stimulated cultures. These results suggest that I2R agonists such as 2-BFI may reduce neuroinflammation which may partially account for their antinociceptive effects.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Zach M LaMacchia
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Vilma Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Jingwei Tian
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA; School of Pharmacy, Yantai University, Yantai, Shandong, China
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Pablo M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
16
|
Role of intracellular Ca 2+ signaling in the antinociceptive and discriminative stimulus effects of the imidazoline I 2 receptor agonist 2-BFI in rats. Psychopharmacology (Berl) 2017; 234:3299-3307. [PMID: 28825118 PMCID: PMC5660937 DOI: 10.1007/s00213-017-4719-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/13/2017] [Indexed: 01/27/2023]
Abstract
RATIONALE Recent research has established the imidazoline I2 receptor as a promising target for the development of novel analgesics. However, despite an increasing understanding of imidazoline I2 receptor-mediated behavioral effects, little is known about post-I2-receptor signaling mechanisms. OBJECTIVE This study examined the effects of several inhibitors of Ca2+ signaling mechanisms on two behavioral effects of the prototypical imidazoline I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline (2-BFI). METHODS The von Frey filament test was used to examine the antinociceptive effects of 2-BFI in complete Freund's adjuvant (CFA)-induced inflammatory pain in rats. A two-lever drug discrimination paradigm in which rats were trained to discriminate 5.6 mg/kg (intraperitoneally) 2-BFI from its vehicle was used to examine the discriminative stimulus effects of 2-BFI. RESULTS The L-type Ca2+ channel blockers verapamil and nimodipine, the calmodulin antagonist W-7, and the internal Ca2+ release inhibitor ryanodine all attenuated the antinociceptive effects of 2-BFI. Oxycodone- and acetaminophen-induced antinociception was unaffected by pretreatment with the Ca2+ channel blockers. Rats learned to reliably discriminate 5.6 mg/kg 2-BFI from saline. The I2 receptor agonists BU224, RS45041, tracizoline, and CR4056 all fully substituted for 5.6 mg/kg 2-BFI while idazoxan, S22687, 2,5-dimethoxy-4-methylamphetamine (DOM), and phenyzoline produced partial or no substitution. Verapamil, nimodipine, and W-7 did not alter the discriminative stimulus effects of 2-BFI. CONCLUSION These results indicate that the antinociceptive effects of 2-BFI involve intracellular Ca2+ elevation and/or downstream Ca2+/calmodulin signaling, whereas the discriminative stimulus effects of 2-BFI are mediated by a distinct, independent mechanism.
Collapse
|
17
|
Tolerance and cross-tolerance to the antinociceptive effects of oxycodone and the imidazoline I 2 receptor agonist phenyzoline in adult male rats. Psychopharmacology (Berl) 2017; 234:1871-1880. [PMID: 28314949 PMCID: PMC5451304 DOI: 10.1007/s00213-017-4599-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE Emerging evidence suggests the potential utility of combining opioids with imidazoline I2 receptor agonists for chronic pain. However, chronic pain management requires prolonged pharmacotherapy, and the consequence of such combination therapy remains unclear. OBJECTIVE This study examined the anti-hyperalgesic effect of the opioid oxycodone, the selective I2 receptor agonist phenyzoline, alone and in combination, during prolonged treatment. METHODS Von Frey filament test was used to examine the anti-hyperalgesic effect of drugs in complete Freund's adjuvant (CFA)-induced inflammatory pain or chronic constriction injury (CCI)-induced neuropathic pain in rats. Twice-daily treatment with oxycodone and phenyzoline, alone or in combination, was continued until the development of significant tolerance (oxycodone) or as long as 19 days passed (phenyzoline). RESULTS In rats receiving CFA or CCI manipulation, mechanical hyperalgesia was dose-dependently reversed by oxycodone and phenyzoline. Twice-daily treatment with 2 × ED50 dose of oxycodone for 7 days led to significant antinociceptive tolerance to oxycodone but not cross-tolerance to phenyzoline. Similarly, twice-daily treatment with 2 × ED50 dose of phenyzoline for 19 days led to significant antinociceptive tolerance to phenyzoline but not cross-tolerance to oxycodone. Twice-daily treatment with the combined oxycodone and phenyzoline using different ratios (1:3, 1:1 and 3: 1) at the doses that were functionally equivalent to the treatment doses of oxycodone and phenyzoline for 13-19 days generally led to delayed antinociceptive tolerance. CONCLUSIONS Combination therapy with oxycodone and I2 receptor agonists maintains prolonged antinociceptive effectiveness with reduced propensity to develop tolerance.
Collapse
|
18
|
Comi E, Lanza M, Ferrari F, Mauri V, Caselli G, Rovati LC. Efficacy of CR4056, a first-in-class imidazoline-2 analgesic drug, in comparison with naproxen in two rat models of osteoarthritis. J Pain Res 2017; 10:1033-1043. [PMID: 28496359 PMCID: PMC5422496 DOI: 10.2147/jpr.s132026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Purpose CR4056, (2-phenyl-6-(1H-imidazol-1yl) quinazoline), an imidazoline-2 (I2) receptor ligand, is a promising analgesic drug that has been reported to be effective in several animal models of pain. The aim of this study was to evaluate the effects of CR4056 in two well-established rat models of osteoarthritis (OA), mimicking the painful and structural components of human OA. Methods Knee OA was induced either by single intra-articular injection of monoiodoacetate (MIA) or by medial meniscal tear (MMT) in the right knee of male rats. In the MIA model, allodynia and hyperalgesia were measured as paw withdrawal threshold to mechanical stimulation. In the MMT model, pain behavior was analyzed as weight-bearing asymmetry (i.e. difference in hind paw weight distribution, HPWD) between the injured and the contralateral limbs. Results Acute oral administration of CR4056, 14 days after MIA injection, significantly and dose-dependently reduced allodynia and hyperalgesia 90 minutes after treatment, whereas acute naproxen administration significantly reduced allodynia but not hyperalgesia. After 7 days of repeated treatment, both CR4056 and naproxen showed significant anti-allodynic and anti-hyperalgesic effects in the MIA model. Rats undergoing MMT surgery developed a significant and progressive asymmetry in HPWD compared with sham-operated animals. Repeated treatment with CR4056 significantly reduced the progression of the pain behavior, whereas naproxen had no effects. Conclusion The data presented here show that the I2 ligand CR4056 could be a new effective treatment for OA pain. The compound is currently under Phase II clinical evaluation for this indication.
Collapse
Affiliation(s)
- Eleonora Comi
- Department of Pharmacology and Toxicology, Rottapharm Biotech.,PhD Program in Neuroscience, University of Milan-Bicocca
| | - Marco Lanza
- Department of Pharmacology and Toxicology, Rottapharm Biotech
| | - Flora Ferrari
- Department of Pharmacology and Toxicology, Rottapharm Biotech
| | - Valeria Mauri
- Department of Pharmacology and Toxicology, Rottapharm Biotech.,Department of Surgery and Translational Medicine, University of Milan-Bicocca, Monza, Italy
| | | | | |
Collapse
|
19
|
Abstract
Since first introduced more than two decades ago, the research in imidazoline I2 receptors has been steadily increasing. This review provides an update on the current status of I2 receptor pharmacology. Imidazoline I2 receptors or I2 binding sites refer to several (at least four) different proteins that bind to [3H]-idazoxan and [3H]-2-BFI with high affinity. The molecular identities of the proteins remain elusive. One of the proteins (45kD) seems to be consistent with the identity of brain creatine kinase. The biological functions of I2 receptors have been primarily unveiled by the studies of selective I2 receptor ligands. Accumulating evidence suggests that I2 receptor ligands are effective analgesics for persistent and chronic painful conditions such as inflammatory, neuropathic and postoperative pain. One selective I2 receptor ligand, CR4056, has been advanced to phase II clinical trial with the therapeutic indication of chronic inflammatory pain (osteoarthritis). The expansion to the treatment of other chronic pain conditions should be expected if CR4056 could eventually be approved as a new drug. I2 receptor ligands also demonstrate robust discriminative stimulus activity and induce a characteristic discriminative cue in animals. Biochemical and preclinical in vivo investigations also suggest that I2 receptor ligands have neuroprotective activity and modulate body temperature. The emerging discrepancies of a range of purported selective I2 receptor ligands suggest different pharmacological effects mediated by discrete I2 receptor components which likely attribute to the I2 receptor-related proteins. It is proposed that the I2 receptors represent an emerging drug target for the treatment of neurological disorders such as pain and stroke, and deserve more research attention to translate preclinical findings to pharmacotherapies.
Collapse
Affiliation(s)
- Jun-Xu Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
20
|
Siemian JN, Obeng S, Zhang Y, Zhang Y, Li JX. Antinociceptive Interactions between the Imidazoline I2 Receptor Agonist 2-BFI and Opioids in Rats: Role of Efficacy at the μ-Opioid Receptor. J Pharmacol Exp Ther 2016; 357:509-19. [PMID: 27056847 PMCID: PMC4885507 DOI: 10.1124/jpet.116.232421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
Although μ-opioids have been reported to interact favorably with imidazoline I2 receptor (I2R) ligands in animal models of chronic pain, the dependence on the μ-opioid receptor ligand efficacy on these interactions had not been previously investigated. This study systematically examined the interactions between the selective I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) and three μ-opioid receptor ligands of varying efficacies: fentanyl (high efficacy), buprenorphine (medium-low efficacy), and 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl) acetamido] morphine (NAQ; very low efficacy). The von Frey test of mechanical nociception and Hargreaves test of thermal nociception were used to examine the antihyperalgesic effects of drug combinations in complete Freund's adjuvant-induced inflammatory pain in rats. Food-reinforced schedule-controlled responding was used to examine the rate-suppressing effects of each drug combination. Dose-addition and isobolographical analyses were used to characterize the nature of drug-drug interactions in each assay. 2-BFI and fentanyl fully reversed both mechanical and thermal nociception, whereas buprenorphine significantly reversed thermal but only slightly reversed mechanical nociception. NAQ was ineffective in both nociception assays. When studied in combination with fentanyl, NAQ acted as a competitive antagonist (apparent pA2 value: 6.19). 2-BFI/fentanyl mixtures produced additive to infra-additive analgesic interactions, 2-BFI/buprenorphine mixtures produced supra-additive to infra-additive interactions, and 2-BFI/NAQ mixtures produced supra-additive to additive interactions in the nociception assays. The effects of all combinations on schedule-controlled responding were generally additive. Results consistent with these were found in experiments using female rats. These findings indicate that lower-efficacy μ-opioid receptor agonists may interact more favorably with I2R ligands than high-efficacy μ-opioid receptor agonists.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Samuel Obeng
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Yan Zhang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Yanan Zhang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| |
Collapse
|
21
|
Thorn DA, Zhang Y, Li JX. Effects of the imidazoline I2 receptor agonist 2-BFI on the development of tolerance to and behavioural/physical dependence on morphine in rats. Br J Pharmacol 2016; 173:1363-72. [PMID: 26776953 DOI: 10.1111/bph.13435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE This study examined the effects of imidazoline I2 receptor agonists on the development of tolerance to and physical dependence on repeated morphine treatment in rats. EXPERIMENTAL APPROACH Two groups of rats (n = 9 per group) were trained to lever press for sucrose (10%) presentation under a fixed-ratio 10 schedule. The rate-suppressing effects of the opioid receptor ligands morphine and naltrexone and the I2 receptor agonist 2-BFI were examined weekly in rats treated with either daily morphine (20 mg·kg(-1) , s.c.), alone or in combination with 2-BFI (10 mg·kg(-1) ) for 3 weeks. Changes in body weight were measured following naltrexone tests in both groups of rats. In separate experiments, the antinociceptive effects of morphine were assessed using a warm-water tail-withdrawal procedure in rats before and after daily treatments (7 days) with morphine (32 mg·kg(-1) , i.p.) alone or in combination with various doses of the I2 receptor agonists 2-BFI, BU224 and CR4056. KEY RESULTS Daily treatment for 3 weeks, with morphine in combination with 2-BFI produced significantly less tolerance to the rate-suppressing effects of morphine and produced a decreased sensitivity to the rate-suppressing effects of naltrexone as well as decreased naltrexone-induced weight loss, compared with morphine-alone group. Repeated treatment for 7 days with morphine produced antinociceptive tolerance, which was attenuated by co-administration with 2-BFI, BU224 or CR4056. CONCLUSIONS AND IMPLICATIONS Imidazoline I2 receptor agonists attenuated the development of tolerance to and physical dependence on morphine, further supporting the therapeutic potential of combining I2 receptor agonists and opioids for pain treatment.
Collapse
Affiliation(s)
- David A Thorn
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, Durham, NC, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|