1
|
Carli S, Brugnano L, Caligiore D. Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system. Front Comput Neurosci 2024; 18:1386841. [PMID: 39247252 PMCID: PMC11378529 DOI: 10.3389/fncom.2024.1386841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Historically, Parkinson's Disease (PD) research has focused on the dysfunction of dopamine-producing cells in the substantia nigra pars compacta, which is linked to motor regulation in the basal ganglia. Therapies have mainly aimed at restoring dopamine (DA) levels, showing effectiveness but variable outcomes and side effects. Recent evidence indicates that PD complexity implicates disruptions in DA, noradrenaline (NA), and serotonin (5-HT) systems, which may underlie the variations in therapy effects. Methods We present a system-level bio-constrained computational model that comprehensively investigates the dynamic interactions between these neurotransmitter systems. The model was designed to replicate experimental data demonstrating the impact of NA and 5-HT depletion in a PD animal model, providing insights into the causal relationships between basal ganglia regions and neuromodulator release areas. Results The model successfully replicates experimental data and generates predictions regarding changes in unexplored brain regions, suggesting avenues for further investigation. It highlights the potential efficacy of alternative treatments targeting the locus coeruleus and dorsal raphe nucleus, though these preliminary findings require further validation. Sensitivity analysis identifies critical model parameters, offering insights into key factors influencing brain area activity. A stability analysis underscores the robustness of our mathematical formulation, bolstering the model validity. Discussion Our holistic approach emphasizes that PD is a multifactorial disorder and opens promising avenues for early diagnostic tools that harness the intricate interactions among monoaminergic systems. Investigating NA and 5-HT systems alongside the DA system may yield more effective, subtype-specific therapies. The exploration of multisystem dysregulation in PD is poised to revolutionize our understanding and management of this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- Entersys s.r.l., Padua, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Luigi Brugnano
- Department of Mathematics and Computer Science "U. Dini", University of Florence, Florence, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Rome, Italy
| |
Collapse
|
2
|
Khsime I, Boulain M, Fettah A, Chagraoui A, Courtand G, De Deurwaerdère P, Juvin L, Barrière G. Limiting Monoamines Degradation Increases L-DOPA Pro-Locomotor Action in Newborn Rats. Int J Mol Sci 2023; 24:14747. [PMID: 37834195 PMCID: PMC10572489 DOI: 10.3390/ijms241914747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.
Collapse
Affiliation(s)
- Inès Khsime
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Marie Boulain
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abderrahman Fettah
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, UNIROUEN, INSERM U1239, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), F-76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, F-76000 Rouen, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | | | - Laurent Juvin
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| | - Grégory Barrière
- Univ. Bordeaux, CNRS, INCIA, UMR5287, F-33000 Bordeaux, France (A.F.); (G.C.); (L.J.)
| |
Collapse
|
3
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
4
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
5
|
Yang K, Zhao X, Wang C, Zeng C, Luo Y, Sun T. Circuit Mechanisms of L-DOPA-Induced Dyskinesia (LID). Front Neurosci 2021; 15:614412. [PMID: 33776634 PMCID: PMC7988225 DOI: 10.3389/fnins.2021.614412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
L-DOPA is the criterion standard of treatment for Parkinson disease. Although it alleviates some of the Parkinsonian symptoms, long-term treatment induces L-DOPA–induced dyskinesia (LID). Several theoretical models including the firing rate model, the firing pattern model, and the ensemble model are proposed to explain the mechanisms of LID. The “firing rate model” proposes that decreasing the mean firing rates of the output nuclei of basal ganglia (BG) including the globus pallidus internal segment and substantia nigra reticulata, along the BG pathways, induces dyskinesia. The “firing pattern model” claimed that abnormal firing pattern of a single unit activity and local field potentials may disturb the information processing in the BG, resulting in dyskinesia. The “ensemble model” described that dyskinesia symptoms might represent a distributed impairment involving many brain regions, but the number of activated neurons in the striatum correlated most strongly with dyskinesia severity. Extensive evidence for circuit mechanisms in driving LID symptoms has also been presented. LID is a multisystem disease that affects wide areas of the brain. Brain regions including the striatum, the pallidal–subthalamic network, the motor cortex, the thalamus, and the cerebellum are all involved in the pathophysiology of LID. In addition, although both amantadine and deep brain stimulation help reduce LID, these approaches have complications that limit their wide use, and a novel antidyskinetic drug is strongly needed; these require us to understand the circuit mechanism of LID more deeply.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xinyue Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Changcai Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Cheng Zeng
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Yan Luo
- Department of Physiology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
6
|
Serotonergic control of the glutamatergic neurons of the subthalamic nucleus. PROGRESS IN BRAIN RESEARCH 2021; 261:423-462. [PMID: 33785138 DOI: 10.1016/bs.pbr.2020.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The subthalamic nucleus (STN) houses a dense cluster of glutamatergic neurons that play a central role in the functional dynamics of the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. Numerous anatomical, electrophysiological, neurochemical and behavioral studies have reported that serotonergic neurons from the midbrain raphe nuclei modulate the activity of STN neurons. Here, we describe this serotonergic innervation and the nature of the regulation exerted by serotonin (5-hydroxytryptamine, 5-HT) on STN neuron activity. This regulation can occur either directly within the STN or at distal sites, including other structures of the basal ganglia or cortex. The effect of 5-HT on STN neuronal activity involves several 5-HT receptor subtypes, including 5-HT1A, 5-HT1B, 5-HT2C and 5-HT4 receptors, which have garnered the highest attention on this topic. The multiple regulatory effects exerted by 5-HT are thought to be modified under pathological conditions, altering the activity of the STN, or due to the benefits and side effects of treatments used for Parkinson's disease, notably the dopamine precursor l-DOPA and high-frequency STN stimulation. Originally understood as a motor center, the STN is also associated with decision making and participates in mood regulation and cognitive performance, two domains of personality that are also regulated by 5-HT. The literature concerning the link between 5-HT and STN is already important, and the functional overlap is evident, but this link is still not entirely understood. The understanding of this link between 5-HT and STN should be increased due to the possible importance of this regulation in the control of fronto-STN loops and inherent motor and non-motor behaviors.
Collapse
|
7
|
Vegas‐Suárez S, Pisanò CA, Requejo C, Bengoetxea H, Lafuente JV, Morari M, Miguelez C, Ugedo L. 6-Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. Br J Pharmacol 2020; 177:3957-3974. [PMID: 32464686 PMCID: PMC7429490 DOI: 10.1111/bph.15145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA-induced dyskinesia (LID) is considered a major complication in the treatment of Parkinson's disease (PD). Buspirone (5-HT1A partial agonist) have shown promising results in the treatment of PD and LID, however no 5-HT-based treatment has been approved in PD. The present study was aimed to investigate how the substantia nigra pars reticulata (SNr) is affected by buspirone and whether it is a good target to study 5-HT antidyskinetic treatments. EXPERIMENTAL APPROACH Buspirone was studied using in vivo single-unit, electrocorticogram, local field potential recordings along with microdialysis and immunohistochemistry in naïve/sham, 6-hydroxydopamine (6-OHDA)-lesioned or 6-OHDA-lesioned and l-DOPA-treated (6-OHDA/l-DOPA) rats. KEY RESULTS Local buspirone inhibited SNr neuron activity in all groups. However, systemic buspirone reduced burst activity in 6-OHDA-lesioned rats (with or without l-DOPA treatment), whereas 8-OH-DPAT, a full 5-HT1A agonist induced larger inhibitory effects in sham animals. Neither buspirone nor 8-OH-DPAT markedly modified the low-frequency oscillatory activity in the SNr or synchronization within the SNr with the cortex. In addition, local perfusion of buspirone increased GABA and glutamate release in the SNr of naïve and 6-OHDA-lesioned rats but no effect in 6-OHDA/l-DOPA rats. In the 6-OHDA/l-DOPA group, increased 5-HT transporter and decreased 5-HT1A receptor expression was found. CONCLUSIONS AND IMPLICATIONS The effects of buspirone in SNr are influenced by dopamine loss and l-DOPA treatment. The present results suggest that the regulation of burst activity of the SNr induced by DA loss may be a good target to test new drugs for the treatment of PD and LID.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Clarissa Anna Pisanò
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Jose Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
8
|
Marin C, Bonastre M, Fuentes M, Mullol J. Lack of correlation between dyskinesia and pallidal serotonin transporter expression-induced by L-Dopa and Pramipexole in hemiparkinsonian rats. Pharmacol Biochem Behav 2020; 197:173012. [PMID: 32750392 DOI: 10.1016/j.pbb.2020.173012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
Abstract
The role of pallidal serotonergic terminals in the development of L-Dopa-induced dyskinesias (LIDs) in Parkinson's disease (PD) has been recently highlighted correlating pallidal serotonin transporter (SERT) expression levels with dyskinesias severity. However, the role of external globus pallidus (GPe, GP in rodents) serotonergic function in LIDs is still controversial since several studies have shown no differences in GPe serotonin (SER) and SERT levels between dyskinetic and non-dyskinetic PD patients. In addition, the increase in pallidal SERT/dopamine transporter (DAT) binding ratio obtained in positron emission tomography studies has been shown similar in both subtypes of PD patients. Based on these controversial results, further studies are required to clarify the possible involvement of GPe serotonergic activity in LIDs expression. We investigated the pallidal SER and SERT expression changes and the abnormal involuntary movements (AIMs) induced by L-Dopa or the D3/D2 dopamine (DA) agonist, Pramipexole, in partial unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. L-Dopa treatment led to an increment of axial (p < 0.01), limb (p < 0.01), and orolingual (p < 0.01) AIMs. However, Pramipexole treatment did not induce AIMs. The number of GP SERT-positive axon varicosities was increased in L-Dopa (p < 0.05) and Pramipexole (p < 0.01) treated rats. No differences were observed in the number of GP SERT-positive varicosities between L-Dopa and Pramipexole treatments. Our results indicate a lack of correlation between GP SERT expression levels and the development of AIMs suggesting that pallidal serotonergic fibers are not responsible for LIDs. The possible involvement of the SER system in dyskinesia may include other mechanisms.
Collapse
Affiliation(s)
- Concepció Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| | - Mercè Bonastre
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Mireya Fuentes
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Joaquim Mullol
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Muñoz A, Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL. Interactions Between the Serotonergic and Other Neurotransmitter Systems in the Basal Ganglia: Role in Parkinson's Disease and Adverse Effects of L-DOPA. Front Neuroanat 2020; 14:26. [PMID: 32581728 PMCID: PMC7289026 DOI: 10.3389/fnana.2020.00026] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. However, other non-dopaminergic neuronal systems such as the serotonergic system are also involved. Serotonergic dysfunction is associated with non-motor symptoms and complications, including anxiety, depression, dementia, and sleep disturbances. This pathology reduces patient quality of life. Interaction between the serotonergic and other neurotransmitters systems such as dopamine, noradrenaline, glutamate, and GABA controls the activity of striatal neurons and are particularly interesting for understanding the pathophysiology of PD. Moreover, serotonergic dysfunction also causes motor symptoms. Interestingly, serotonergic neurons play an important role in the effects of L-DOPA in advanced PD stages. Serotonergic terminals can convert L-DOPA to dopamine, which mediates dopamine release as a "false" transmitter. The lack of any autoregulatory feedback control in serotonergic neurons to regulate L-DOPA-derived dopamine release contributes to the appearance of L-DOPA-induced dyskinesia (LID). This mechanism may also be involved in the development of graft-induced dyskinesias (GID), possibly due to the inclusion of serotonin neurons in the grafted tissue. Consistent with this, the administration of serotonergic agonists suppressed LID. In this review article, we summarize the interactions between the serotonergic and other systems. We also discuss the role of the serotonergic system in LID and if therapeutic approaches specifically targeting this system may constitute an effective strategy in PD.
Collapse
Affiliation(s)
- Ana Muñoz
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Andrea Lopez-Lopez
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Deptartment of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CiberNed), Madrid, Spain
| |
Collapse
|
10
|
Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, De Deurwaerdère P. L-DOPA in Parkinson's Disease: Looking at the "False" Neurotransmitters and Their Meaning. Int J Mol Sci 2019; 21:ijms21010294. [PMID: 31906250 PMCID: PMC6981630 DOI: 10.3390/ijms21010294] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson’s disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood–brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These “false neurotransmitters,” also known for some of them as inducing an “amphetamine-like” mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to “false neurotransmission.”
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, 76000 Rouen, France
| | - Marie Boulain
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Laurent Juvin
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Youssef Anouar
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM, U1239 CHU de Rouen, 76000 Rouen, France; (A.C.); (Y.A.)
| | - Grégory Barrière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 33076 Bordeaux CEDEX, France; (M.B.); (L.J.); (G.B.)
- Correspondence: ; Tel.: +33-0-557-57-12-90
| |
Collapse
|
11
|
Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A, Lafuente JV, Miguelez C, Ugedo L. Dysfunction of serotonergic neurons in Parkinson's disease and dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:259-279. [PMID: 31349930 DOI: 10.1016/bs.irn.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra, the depletion of striatal dopamine and the presence of Lewy aggregates containing alpha-synuclein. Clinically, there are motor impairments involving cardinal movement symptoms, bradykinesia, resting tremor, muscle rigidity, and postural abnormalities, along with non-motor symptoms such as sleep, behavior and mood disorders. The current treatment for PD focuses on restoring dopaminergic neurotransmission by l-3,4-dihydroxyphenylalanine (levodopa), which loses therapeutic efficacy and induces disabling abnormal involuntary movements known as levodopa-induced dyskinesia (LID) after several years. Evidence indicates that the pathophysiology of both PD and LID disorders is also associated with the dysfunctional activity of the serotonergic (5-HT) neurons that may be responsible for motor and non-motor disturbances. The main population of 5-HT neurons is located in the dorsal raphe nuclei (DRN), which provides extensive innervation to almost the entire neuroaxis and controls multiple functions in the brain. The degeneration of DRN 5-HT neurons occurs in early PD. These neurons can also take exogenous levodopa to transform it into dopamine, which may disturb neuron activity. This review will provide an overview of the underlying mechanisms responsible for 5-HT dysfunction and its clinical relevance in PD and dyskinesia.
Collapse
Affiliation(s)
- Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Aristieta
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Jose V Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Nanosurgery, Biocruces Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
12
|
Kamińska K, Lenda T, Konieczny J, Wardas J, Lorenc-Koci E. Interactions of the tricyclic antidepressant drug amitriptyline with L-DOPA in the striatum and substantia nigra of unilaterally 6-OHDA-lesioned rats. Relevance to motor dysfunction in Parkinson's disease. Neurochem Int 2018; 121:125-139. [PMID: 30290201 DOI: 10.1016/j.neuint.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/24/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Antidepressant drugs are recommended for the treatment of Parkinson's disease (PD)-associated depression but their role in the modulation of L-DOPA-induced behavioral and neurochemical markers is poorly explored. The aim of the present study was to examine the impact of the tricyclic antidepressant amitriptyline and L-DOPA, administered chronically alone or in combination, on rotational behavior, monoamine levels and binding of radioligands to their transporters in the dopaminergic brain structures of unilaterally 6-OHDA-lesioned rats. Binding of [3H]nisoxetine to noradrenaline transporter (NET), [3H]GBR 12,935 to dopamine transporter (DAT) and [3H]citalopram to serotonin transporter (SERT) were analyzed by autoradiography. Amitriptyline administered alone did not induce rotational behavior but in combination with L-DOPA increased the number of contralateral rotations much more strongly than L-DOPA alone. The combined treatment also significantly increased the tissue dopamine (DA) content in the ipsilateral striatum and substantia nigra (SN) vs. L-DOPA alone. 6-OHDA-mediated lesion of nigrostriatal DA neurons drastically reduced DAT and NET bindings in the ipsilateral striatum. In the ipsilateral SN, DAT binding decreased while NET binding rose. SERT binding increased significantly mainly in the SN. Amitriptyline administered alone or jointly with L-DOPA had no effect on DAT binding on the lesioned side, significantly decreased SERT binding in the striatum and SN while NET binding only in the SN. Since in the DA-denervated striatum, SERT is mainly responsible for reuptake of L-DOPA-derived DA while in the SN, SERT and NET are involved, the inhibition of these transporters by antidepressant drugs may improve dopaminergic transmission and consequently motor behavior.
Collapse
Affiliation(s)
- Kinga Kamińska
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Tomasz Lenda
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jolanta Konieczny
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Jadwiga Wardas
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Elżbieta Lorenc-Koci
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neuro-Psychopharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| |
Collapse
|
13
|
Ebrahimikia Y, Darabi S, Rajaei F. Roles of stem cells in the treatment of Parkinson's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.4.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Di Giovanni G, Chagraoui A, Puginier E, Galati S, De Deurwaerdère P. Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: Implication in the mechanism of L-DOPA. Neurobiol Dis 2018; 128:9-18. [PMID: 30149181 DOI: 10.1016/j.nbd.2018.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/19/2018] [Accepted: 08/23/2018] [Indexed: 01/31/2023] Open
Abstract
The pedunculopontine nucleus (PPN) is part of the mesencephalic locomotor region (MLR) and has been involved in the control of gait, posture, locomotion, sleep, and arousal. It likely participates in some motor and non-motor symptoms of Parkinson's disease and is regularly proposed as a surgical target to ameliorate gait, posture and sleep disorders in Parkinsonian patients. The PPN overlaps with the monoaminergic systems including dopamine, serotonin and noradrenaline in the modulation of the above-mentioned functions. All these systems are involved in Parkinson's disease and the mechanism of the anti-Parkinsonian agents, mostly L-DOPA. This suggests that PPN interacts with monoaminergic neurons and vice versa. Some evidence indicates that the PPN sends cholinergic, glutamatergic and even gabaergic inputs to mesencephalic dopaminergic cells, with the data regarding serotonergic or noradrenergic cells being less well known. Similarly, the control exerted by the PPN on dopaminergic neurons, is multiple and complex, and more extensively explored than the other monoaminergic systems. The data on the influence of monoaminergic systems on PPN neuron activity are rather scarce. While there is evidence that the PPN influences the therapeutic response of L-DOPA, it is still difficult to discerne the reciprocal action of the PPN and monoaminergic systems in this action. Additional data are required to better understand the functional organization of monoaminergic inputs to the MLR including the PPN to get a clearer picture of their interaction.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - Abdeslam Chagraoui
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Emilie Puginier
- Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Salvatore Galati
- Parkinson and movement Disorders Center Neurocenter of Southern Switzerland, Ospedale Civico di Lugano, Lugano, Switzerland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 rue Léo Saignat, B.P.281, F-33000 Bordeaux Cedex, France.
| |
Collapse
|
15
|
Bordia T, Perez XA. Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias. Eur J Neurosci 2018; 49:859-868. [PMID: 29923650 DOI: 10.1111/ejn.14048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/28/2022]
Abstract
L-dopa induced dyskinesias (LIDs) are a disabling motor complication of L-dopa therapy for Parkinson's disease (PD) management. Treatment options remain limited and the underlying network mechanisms remain unclear due to a complex pathophysiology. What is well-known, however, is that aberrant striatal signaling plays a key role in LIDs development. Here, we discuss the specific contribution of striatal cholinergic interneurons (ChIs) and GABAergic medium spiny projection neurons (MSNs) with a particular focus on how cholinergic signaling may integrate multiple striatal systems to modulate LIDs expression. Enhanced ChI transmission, altered MSN activity and the associated abnormal downstream signaling responses that arise with nigrostriatal damage are well known to contribute to LIDs development. In fact, enhancing M4 muscarinic receptor activity, a receptor favorably expressed on D1 dopamine receptor-expressing MSNs dampens their activity to attenuate LIDs. Likewise, ChI activation via thalamostriatal neurons is shown to interrupt cortical signaling to enhance D2 dopamine receptor-expressing MSN activity via M1 muscarinic receptors, which may interrupt ongoing motor activity. Notably, numerous preclinical studies also show that reducing nicotinic cholinergic receptor activity decreases LIDs. Taken together, these studies indicate the importance of cholinergic control of striatal neuronal activity and point to muscarinic and nicotinic receptors as significant pharmacological targets for alleviating LIDs in PD patients.
Collapse
Affiliation(s)
- Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| | - Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA
| |
Collapse
|
16
|
Miguelez C, Benazzouz A, Ugedo L, De Deurwaerdère P. Impairment of Serotonergic Transmission by the Antiparkinsonian Drug L-DOPA: Mechanisms and Clinical Implications. Front Cell Neurosci 2017; 11:274. [PMID: 28955204 PMCID: PMC5600927 DOI: 10.3389/fncel.2017.00274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/25/2017] [Indexed: 11/19/2022] Open
Abstract
The link between the anti-Parkinsonian drug L-3,4-dihydroxyphenylalanine (L-DOPA) and the serotonergic (5-HT) system has been long established and has received increased attention during the last decade. Most studies have focused on the fact that L-DOPA can be transformed into dopamine (DA) and released from 5-HT terminals, which is especially important for the management of L-DOPA-induced dyskinesia. In patients, treatment using L-DOPA also impacts 5-HT neurotransmission; however, few studies have investigated the mechanisms of this effect. The purpose of this review is to summarize the electrophysiological and neurochemical data concerning the effects of L-DOPA on 5-HT cell function. This review will argue that L-DOPA disrupts the link between the electrical activity of 5-HT neurons and 5-HT release as well as that between 5-HT release and extracellular 5-HT levels. These effects are caused by the actions of L-DOPA and DA in 5-HT neurons, which affect 5-HT neurotransmission from the biosynthesis of 5-HT to the impairment of the 5-HT transporter. The interaction between L-DOPA and 5-HT transmission is especially relevant in those Parkinson’s disease (PD) patients that suffer dyskinesia, comorbid anxiety or depression, since the efficacy of antidepressants or 5-HT compounds may be affected.
Collapse
Affiliation(s)
- Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU)Leioa, Spain
| | - Philippe De Deurwaerdère
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293Bordeaux, France
| |
Collapse
|
17
|
Wang S, Zhao Y, Gao J, Guo Y, Wang X, Huo J, Wei P, Cao J. In Vivo Effect of a 5-HT 7 Receptor Agonist on 5-HT Neurons and GABA Interneurons in the Dorsal Raphe Nuclei of Sham and PD Rats. Am J Alzheimers Dis Other Demen 2017; 32:73-81. [PMID: 28084087 PMCID: PMC10852805 DOI: 10.1177/1533317516685425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The 5-hydroxytryptamine (5-HT; serotonin) neurotransmission is severely affected by the degeneration of nigrostriatal dopaminergic neurons. Here, we report the effects of the systemic administration of the 5-HT7 receptor agonist AS-19. In sham rats, the mean response of the 5-HT neurons in the dorsal raphe nucleus (DRN) to systemic AS-19 was excitatory and the mean response of the γ-aminobutyric acid (GABA) interneurons was inhibitory. In Parkinson disease (PD) rats, the same dose did not affect the 5-HT neurons and only high doses (640 μg/kg intravenous) were able to the increase GABA interneuron activity. These results indicate that DRN 5-HT neurons and GABA interneurons are regulated by the activation of 5-HT7 receptors and that the degeneration of the nigrostriatal pathway leads to decreased responses of these neurons to AS-19, which in turn suggests that the 5-HT7 receptors on 5-HT neurons and GABA interneurons in PD rats are dysfunctional and downregulated.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Yan Zhao
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jie Gao
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Yufang Guo
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Xiang Wang
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jian Huo
- Department of Pathophysiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Ping Wei
- Department of Immunology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Jian Cao
- Department of Physiology, Institute of Basic Medical Science, Xi’an Medical University, Xi’an, China
| |
Collapse
|
18
|
Stefani A, Trendafilov V, Liguori C, Fedele E, Galati S. Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson's disease: Focus on neurochemistry. Prog Neurobiol 2017; 151:157-174. [PMID: 28159574 DOI: 10.1016/j.pneurobio.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) has become a standard therapy for Parkinson's disease (PD) and it is also currently under investigation for other neurological and psychiatric disorders. Although many scientific, clinical and ethical issues are still unresolved, DBS delivered into the subthalamic nucleus (STN) has improved the quality of life of several thousands of patients. The mechanisms underlying STN-DBS have been debated extensively in several reviews; less investigated are the biochemical consequences, which are still under scrutiny. Crucial and only partially understood, for instance, are the complex interplays occurring between STN-DBS and levodopa (LD)-centred therapy in the post-surgery follow-up. The main goal of this review is to address the question of whether an improved motor control, based on STN-DBS therapy, is also achieved through the additional modulation of other neurotransmitters, such as noradrenaline (NA) and serotonin (5-HT). A critical issue is to understand not only acute DBS-mediated effects, but also chronic changes, such as those involving cyclic nucleotides, capable of modulating circuit plasticity. The present article will discuss the neurochemical changes promoted by STN-DBS and will document the main results obtained in microdialysis studies. Furthermore, we will also examine the preliminary achievements of voltammetry applied to humans, and discuss new hypothetical investigational routes, taking into account novel players such as glia, or subcortical regions such as the pedunculopontine (PPN) area. Our further understanding of specific changes in brain chemistry promoted by STN-DBS would further disseminate its utilisation, at any stage of disease, avoiding an irreversible lesioning approach.
Collapse
Affiliation(s)
- A Stefani
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - V Trendafilov
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland
| | - C Liguori
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - E Fedele
- Department of Pharmacy, Pharmacology and Toxicology Unit and Center of Excellence for Biomedical Research, University of Genoa, 16148 Genoa, Italy
| | - S Galati
- Laboratory for Biomedical Neurosciences (LBN), Neurocenter of Southern Switzerland (NSI), Lugano, Switzerland.
| |
Collapse
|
19
|
Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10:541. [PMID: 27932945 PMCID: PMC5121249 DOI: 10.3389/fnins.2016.00541] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Montse Sole
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity College DublinDublin, Ireland
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), Institut of Neurodegenerative DiseasesBordeaux Cedex, France
| |
Collapse
|
20
|
He H, Guo WW, Xu RR, Chen XQ, Zhang N, Wu X, Wang XM. Alkaloids from piper longum protect dopaminergic neurons against inflammation-mediated damage induced by intranigral injection of lipopolysaccharide. Altern Ther Health Med 2016; 16:412. [PMID: 27776556 PMCID: PMC5078945 DOI: 10.1186/s12906-016-1392-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022]
Abstract
Background Alkaloids from Piper longum (PLA), extracted from P. longum, have potent anti-inflammatory effects. The aim of this study was to investigate whether PLA could protect dopaminergic neurons against inflammation-mediated damage by inhibiting microglial activation using a lipopolysaccharide (LPS)-induced dopaminergic neuronal damage rat model. Methods The animal behaviors of rotational behavior, rotarod test and open-field test were investigated. The survival ratio of dopaminergic neurons and microglial activation were examined. The dopamine (DA) and its metabolite were detected by high performance liquid chromatography (HPLC). The effects of PLA on the expression of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and nitric oxide (NO) were also estimated. Results We showed that the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and DA content in the striatum were reduced after a single intranigral dose of LPS (10 μg) treatment. The survival rate of TH-ir neurons in the SNpc and DA levels in the striatum were significantly improved after treatment with PLA for 6 weeks. The over-activated microglial cells were suppressed by PLA treatment. We also observed that the levels of inflammatory cytokines, including TNF-α, IL-6 and IL-1β were decreased and the excessive production of ROS and NO were abolished after PLA treatment. Therefore, the behavioral dysfunctions induced by LPS were improved after PLA treatment. Conclusion This study suggests that PLA plays a significant role in protecting dopaminergic neurons against inflammatory reaction induced damage.
Collapse
|
21
|
L-DOPA elicits non-vesicular releases of serotonin and dopamine in hemiparkinsonian rats in vivo. Eur Neuropsychopharmacol 2016; 26:1297-309. [PMID: 27234917 DOI: 10.1016/j.euroneuro.2016.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/20/2016] [Accepted: 05/08/2016] [Indexed: 12/27/2022]
Abstract
The control of the secretory activity of serotonergic neurons has been pointed out to reduce motor and non-motor side effects of the antiparkinsonian drug L-DOPA. This strategy deserves further investigation because it is presently unclear whether L-DOPA promotes a non-vesicular release of dopamine and serotonin from serotonergic neurons. To get a full neurochemical picture compatible with the existence of such a mechanism, we combined multisite intracerebral microdialysis, post mortem tissue measurement and single unit extracellular recordings in the dorsal raphe nucleus from hemiparkinsonian rats. L-DOPA (3-100mg/kg, ip.) non-homogeneously decreased extracellular serotonin levels in the striatum, substantia nigra pars reticulata, hippocampus and prefrontal cortex and homogenously serotonin tissue content in the striatum, cortex and cerebellum. L-DOPA (12mg/kg) did not modify the firing rate or pattern of serotonergic-like neurons recorded in the dorsal raphe nucleus. When focusing on serotonin release in the prefrontal cortex and the hippocampus, we found that L-DOPA (12 or 100mg/kg) enhanced serotonin extracellular levels in both regions upon Ca(2+) removal. Concomitantly, L-DOPA-stimulated dopamine release partly persisted in the absence of Ca(2+) in a region-dependent manner. Local application of the serotonin reuptake inhibitor citalopram (1µM) blunted the responses to L-DOPA (3-12mg/kg), measured as extracellular dopamine levels, most prominently in the hippocampus. These data stress that L-DOPA, already at low to moderate doses, promotes non-vesicular releases of serotonin and dopamine in a region-dependent manner.
Collapse
|
22
|
De Deurwaerdère P, Di Giovanni G, Millan MJ. Expanding the repertoire of L-DOPA's actions: A comprehensive review of its functional neurochemistry. Prog Neurobiol 2016; 151:57-100. [PMID: 27389773 DOI: 10.1016/j.pneurobio.2016.07.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023]
Abstract
Though a multi-facetted disorder, Parkinson's disease is prototypically characterized by neurodegeneration of nigrostriatal dopaminergic neurons of the substantia nigra pars compacta, leading to a severe disruption of motor function. Accordingly, L-DOPA, the metabolic precursor of dopamine (DA), is well-established as a treatment for the motor deficits of Parkinson's disease despite long-term complications such as dyskinesia and psychiatric side-effects. Paradoxically, however, despite the traditional assumption that L-DOPA is transformed in residual striatal dopaminergic neurons into DA, the mechanism of action of L-DOPA is neither simple nor entirely clear. Herein, focussing on its influence upon extracellular DA and other neuromodulators in intact animals and experimental models of Parkinson's disease, we highlight effects other than striatal generation of DA in the functional profile of L-DOPA. While not excluding a minor role for glial cells, L-DOPA is principally transformed into DA in neurons yet, interestingly, with a more important role for serotonergic than dopaminergic projections. Moreover, in addition to the striatum, L-DOPA evokes marked increases in extracellular DA in frontal cortex, nucleus accumbens, the subthalamic nucleus and additional extra-striatal regions. In considering its functional profile, it is also important to bear in mind the marked (probably indirect) influence of L-DOPA upon cholinergic, GABAergic and glutamatergic neurons in the basal ganglia and/or cortex, while anomalous serotonergic transmission is incriminated in the emergence of L-DOPA elicited dyskinesia and psychosis. Finally, L-DOPA may exert intrinsic receptor-mediated actions independently of DA neurotransmission and can be processed into bioactive metabolites. In conclusion, L-DOPA exerts a surprisingly complex pattern of neurochemical effects of much greater scope that mere striatal transformation into DA in spared dopaminergic neurons. Their further experimental and clinical clarification should help improve both L-DOPA-based and novel strategies for controlling the motor and other symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- CNRS (Centre National de la Recherche Scientifique), Institut des Maladies Neurodégénératives, UMR CNRS 5293, F-33000 Bordeaux, France.
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK; Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Mark J Millan
- Institut de Recherche Servier, Pole for Therapeutic Innovation in Neuropsychiatry, 78290 Croissy/Seine,Paris, France
| |
Collapse
|
23
|
Ramsay RR, De Deurwaerdère P, Di Giovanni G. Updating neuropathology and neuropharmacology of monoaminergic systems. Br J Pharmacol 2016; 173:2065-8. [PMID: 27302283 PMCID: PMC4908203 DOI: 10.1111/bph.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research CentreUniversity of St AndrewsSt AndrewsUK
| | | | - Giuseppe Di Giovanni
- Neuroscience Division, School of BioscienceCardiff UniversityCardiffUK
- Department of Physiology and BiochemistryUniversity of MaltaMsidaMalta
| |
Collapse
|
24
|
Miguelez C, Navailles S, De Deurwaerdère P, Ugedo L. The acute and long-term L-DOPA effects are independent from changes in the activity of dorsal raphe serotonergic neurons in 6-OHDA lesioned rats. Br J Pharmacol 2016; 173:2135-46. [PMID: 26805402 PMCID: PMC4908202 DOI: 10.1111/bph.13447] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE L-DOPA is still the most efficacious pharmacological treatment for Parkinson's disease. However, in the majority of patients receiving long-term therapy with L-DOPA, its efficacy is compromised by motor complications, notably L-DOPA-induced dyskinesia. Evidence suggests that the serotonergic system is involved in the therapeutic and the side effects of L-DOPA. Here, we investigate if long-term L-DOPA treatment alters the activity of the dorsal raphe nucleus (DRN) and its responses to serotonergic drugs. EXPERIMENTAL APPROACH We measured the responses of serotonergic neurons to acute and chronic L-DOPA treatment using in vivo electrophysiological single unit-extracellular recordings in the 6-OHDA-lesion rat model of Parkinson's disease. KEY RESULTS The results showed that neither acute nor chronic L-DOPA administration (6 mg·kg(-1) s.c.) altered the properties of serotonergic-like neurons. Furthermore, no correlation was found between the activity of these neurons and the magnitude of L-DOPA-induced dyskinesia. In dyskinetic rats, the inhibitory response induced by the 5-HT1A receptor agonist 8-OH-DPAT (0.0625-16 μg·kg(-1) , i.v.) was preserved. Nonetheless, L-DOPA impaired the ability of the serotonin reuptake inhibitor fluoxetine (0.125-8 mg·kg(-1) , i.v) to inhibit DRN neuron firing rate in dyskinetic animals. CONCLUSIONS AND IMPLICATIONS Although serotonergic neurons are involved in the dopaminergic effects of L-DOPA, we provide evidence that the effect of L-DOPA is not related to changes of the activity of DRN neurons. Rather, L-DOPA might reduce the efficacy of drugs that normally enhance the extracellular levels of serotonin. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- C Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - S Navailles
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - P De Deurwaerdère
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - L Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
25
|
De Deurwaerdère P, Di Giovanni G. Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 2016; 151:175-236. [PMID: 27013075 DOI: 10.1016/j.pneurobio.2016.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
Since their discovery in the mammalian brain, it has been apparent that serotonin (5-HT) and dopamine (DA) interactions play a key role in normal and abnormal behavior. Therefore, disclosure of this interaction could reveal important insights into the pathogenesis of various neuropsychiatric diseases including schizophrenia, depression and drug addiction or neurological conditions such as Parkinson's disease and Tourette's syndrome. Unfortunately, this interaction remains difficult to study for many reasons, including the rich and widespread innervations of 5-HT and DA in the brain, the plethora of 5-HT receptors and the release of co-transmitters by 5-HT and DA neurons. The purpose of this review is to present electrophysiological and biochemical data showing that endogenous 5-HT and pharmacological 5-HT ligands modify the mesencephalic DA systems' activity. 5-HT receptors may control DA neuron activity in a state-dependent and region-dependent manner. 5-HT controls the activity of DA neurons in a phasic and excitatory manner, except for the control exerted by 5-HT2C receptors which appears to also be tonically and/or constitutively inhibitory. The functional interaction between the two monoamines will also be discussed in view of the mechanism of action of antidepressants, antipsychotics, anti-Parkinsonians and drugs of abuse.
Collapse
Affiliation(s)
- Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux Cedex, France.
| | - Giuseppe Di Giovanni
- Department of Physiology & Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|