1
|
Petracco E, Ferré G, Kabelka I, Ballante F, Carlsson J, Mulry E, Ray AP, Collins J, Allais F, Eddy MT. Development of an In Situ G Protein-Coupled Receptor Fragment Molecule Screening Approach with High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. ACS Chem Biol 2025; 20:401-411. [PMID: 39836507 DOI: 10.1021/acschembio.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Small molecules are essential for investigating the pharmacology of membrane proteins and remain the most common approach for therapeutically targeting them. However, most experimental small molecule screening methods require ligands containing radiolabels or fluorescent labels and often involve isolating proteins from their cellular environment. Additionally, most conventional screening methods are suited for identifying compounds with moderate to higher affinities (KD < 1 μM) and are less effective at detecting lower affinity compounds, such as weakly binding molecular fragments. To address these limitations, we demonstrated a proof-of-concept application of high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy with small molecules that bind the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor. Our approach leverages a streamlined workflow to prepare NMR samples with only milligrams of unpurified cell membranes containing ∼1 μM of A2AAR. Utilizing saturation transfer difference NMR, we identified bound small molecules from spectra recorded within minutes and further derived information on ligand binding poses without the need for detailed structure determination. After establishing optimal criteria for which the HRMAS approach is most sensitive, we leveraged our HRMAS approach to identify and characterize molecular fragments not previously known to be ligands of A2AAR. In molecular docking and simulations, we observed novel binding poses for these fragments, which revealed the potential to grow them into more complex ligands and confirmed HRMAS NMR as a valuable tool for lead compound identification in the context of fragment-based drug discovery.
Collapse
Affiliation(s)
- Enzo Petracco
- Department of Chemistry, University of Florida, Gainesville Florida 32611, United States
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville Florida 32611, United States
| | - Ivo Kabelka
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596 Uppsala SE-751 24, Sweden
| | - Flavio Ballante
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596 Uppsala SE-751 24, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596 Uppsala SE-751 24, Sweden
| | - Emma Mulry
- Department of Chemistry, University of Florida, Gainesville Florida 32611, United States
| | - Arka P Ray
- Department of Chemistry, University of Florida, Gainesville Florida 32611, United States
| | - James Collins
- National High Magnetic Field Laboratory and McKnight Brain Institute, University of Florida, Box 100015, Gainesville Florida 32610-0015, United States
| | - Florent Allais
- Department of Chemistry, University of Florida, Gainesville Florida 32611, United States
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Matthew T Eddy
- Department of Chemistry, University of Florida, Gainesville Florida 32611, United States
| |
Collapse
|
2
|
Lottero-Leconte R, Lara A, Plaza J, Arroyo-Salvo C, Bogetti ME, Rivolta AEY, Dellavalle F, Sengiali F, Cetica P, Rio S, Zalazar L, Cesari A, Miragaya M, Morado S, Perez-Martinez S. Role of GPR55 receptor in bovine sperm capacitation. Andrology 2025. [PMID: 39749764 DOI: 10.1111/andr.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/09/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Endocannabinoids like anandamide (AEA), among other lipids, are recognized signaling molecules that participate in reproductive events. OBJECTIVES Our aims were to characterize orphan G protein-coupled receptor (GPR55) presence; investigate GPR55 activation by AEA and determine GPR55 role in the bovine sperm function. MATERIALS AND METHODS GPR55 presence was assessed by immunocytochemistry. Protein kinase A (pPKA) and PKC (pPKC) substrates, pERK1/2, G/F-actin were determined by Western blotting, activation of RAC-1 by pull-down assay, F-actin and acrosomal exocytosis by fluorescence microscopy, sperm motility by optic microscopy and computer-aided sperm analysis and fertilizing ability by in vitro fertilization (IVF). RESULTS We detected GPR55 in spermatozoa at T0, after incubation in non-capacitating and capacitating (presence of AEA) conditions and upon release from oviductal epithelia. AEA induced an increase in pPKA and pPKC, while CID16020046 (CID), selective GPR55 antagonist, prevented this effect. Incubation with H89, PKA inhibitor, significantly decreased pPKC, while Gö6983, a PKC inhibitor, partially reduced pPKA. pPKA remained elevated at 15- and 45-min incubation, while pPKC decreased at 15 and increased at 45 min. CID prevented pPKC increase at 5 and 45 min and decreased pPKA at 45 min. RAC-1 and F-actin increase induced by AEA was prevented by CID. Variations in two progressive motility kinematic parameters were observed with AEA and/or CID. Sperm pretreatment with AEA increased the rate of cleaved embryos and CID prevented this effect. DISCUSSION We demonstrated that GPR55 activation by AEA induces time-dependent signaling pathways involving pPKA and pPKC during bovine sperm capacitation. AEA regulates actin polymerization through GPR55 activation, suggesting the receptor participates in cytoskeleton remodeling, and yielded higher IVF rates. Also, sperm pre-incubation with molecules like AEA involved in capacitation could improve the embryo development. CONCLUSION We have demonstrated GPR55 presence in bovine spermatozoa. The regulation of PKA and PKC and of molecules associated with cytoskeletal dynamics, such as RAC-1 and actin, by GPR55 is closely related to sperm motility and acrosomal exocytosis.
Collapse
Affiliation(s)
- Raquel Lottero-Leconte
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Angela Lara
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - María Eugenia Bogetti
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Amada Eugenia Ynsaurralde Rivolta
- Laboratorio de Biotecnología de la Reproducción. Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes-Corrientes, Argentina
| | - Franco Dellavalle
- Laboratorio de Biotecnología de la Reproducción. Instituto Nacional de Tecnología Agropecuaria (INTA), Mercedes-Corrientes, Argentina
| | - Fiamma Sengiali
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cetica
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Rio
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| | - Lucia Zalazar
- Instituto de Investigaciones Biológicas CONICET, Universidad Nacional de Mar del Plata (IIB/UNMdP), Mar del Plata, Argentina
| | - Andreína Cesari
- Instituto de Investigaciones Biológicas CONICET, Universidad Nacional de Mar del Plata (IIB/UNMdP), Mar del Plata, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Morado
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Enten GA, Gao X, McGee MY, Weche M, Majetschak M. Chemokine receptor hetero-oligomers regulate monocyte chemotaxis. Life Sci Alliance 2024; 7:e202402657. [PMID: 38782603 PMCID: PMC11116815 DOI: 10.26508/lsa.202402657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.
Collapse
MESH Headings
- Humans
- Monocytes/metabolism
- Chemotaxis
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/genetics
- THP-1 Cells
- Protein Multimerization
- HEK293 Cells
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- CRISPR-Cas Systems
- Signal Transduction
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Ligands
Collapse
Affiliation(s)
- Garrett A Enten
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Xianlong Gao
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Michelle Y McGee
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
4
|
Sauvé R, Morin S, Yam PT, Charron F. β-arrestins Are Scaffolding Proteins Required for Shh-Mediated Axon Guidance. J Neurosci 2024; 44:e0261242024. [PMID: 38886055 PMCID: PMC11270522 DOI: 10.1523/jneurosci.0261-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
During nervous system development, Sonic hedgehog (Shh) guides developing commissural axons toward the floor plate of the spinal cord. To guide axons, Shh binds to its receptor Boc and activates downstream effectors such as Smoothened (Smo) and Src family kinases (SFKs). SFK activation requires Smo activity and is also required for Shh-mediated axon guidance. Here we report that β-arrestin1 and β-arrestin2 (β-arrestins) serve as scaffolding proteins that link Smo and SFKs in Shh-mediated axon guidance. We found that β-arrestins are expressed in rat commissural neurons. We also found that Smo, β-arrestins, and SFKs form a tripartite complex, with the complex formation dependent on β-arrestins. β-arrestin knockdown blocked the Shh-mediated increase in Src phosphorylation, demonstrating that β-arrestins are required to activate Src kinase downstream of Shh. β-arrestin knockdown also led to the loss of Shh-mediated attraction of rat commissural axons in axon turning assays. Expression of two different dominant-negative β-arrestins, β-arrestin1 V53D which blocks the internalization of Smo and β-arrestin1 P91G-P121E which blocks its interaction with SFKs, also led to the loss of Shh-mediated attraction of commissural axons. In vivo, the expression of these dominant-negative β-arrestins caused defects in commissural axon guidance in the spinal cord of chick embryos of mixed sexes. Thus we show that β-arrestins are essential scaffolding proteins that connect Smo to SFKs and are required for Shh-mediated axon guidance.
Collapse
Affiliation(s)
- Rachelle Sauvé
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Steves Morin
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Patricia T Yam
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
| | - Frédéric Charron
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec H2W 1R7, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
5
|
Mahardhika AB, Załuski M, Schoeder CT, Boshta NM, Schabikowski J, Perri F, Łażewska D, Neumann A, Kremers S, Oneto A, Ressemann A, Latacz G, Namasivayam V, Kieć-Kononowicz K, Müller CE. Potent, Selective Agonists for the Cannabinoid-like Orphan G Protein-Coupled Receptor GPR18: A Promising Drug Target for Cancer and Immunity. J Med Chem 2024; 67:9896-9926. [PMID: 38885438 DOI: 10.1021/acs.jmedchem.3c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in β-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| | - Michal Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Clara T Schoeder
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Nader M Boshta
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Filomena Perri
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Alexander Neumann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Sarah Kremers
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Angelo Oneto
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Anastasiia Ressemann
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Pl 30-688 Kraków, Poland
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
- Research Training Group 2873, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
6
|
Wu Q, Liu WJ, Ma XY, Chang JS, Zhao XY, Liu YH, Yu XY. Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition. Acta Pharmacol Sin 2024; 45:738-750. [PMID: 38097716 PMCID: PMC10943222 DOI: 10.1038/s41401-023-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 μM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Jie Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-Yu Ma
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Shuo Chang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Ya Zhao
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xi-Yong Yu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
White CW, Platt S, Kilpatrick LE, Dale N, Abhayawardana RS, Dekkers S, Kindon ND, Kellam B, Stocks MJ, Pfleger KDG, Hill SJ. CXCL17 is an allosteric inhibitor of CXCR4 through a mechanism of action involving glycosaminoglycans. Sci Signal 2024; 17:eabl3758. [PMID: 38502733 PMCID: PMC7615768 DOI: 10.1126/scisignal.abl3758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
CXCL17 is a chemokine principally expressed by mucosal tissues, where it facilitates chemotaxis of monocytes, dendritic cells, and macrophages and has antimicrobial properties. CXCL17 is also implicated in the pathology of inflammatory disorders and progression of several cancers, and its expression is increased during viral infections of the lung. However, the exact role of CXCL17 in health and disease requires further investigation, and there is a need for confirmed molecular targets mediating CXCL17 functional responses. Using a range of bioluminescence resonance energy transfer (BRET)-based assays, here we demonstrated that CXCL17 inhibited CXCR4-mediated signaling and ligand binding. Moreover, CXCL17 interacted with neuropillin-1, a VEGFR2 coreceptor. In addition, we found that CXCL17 only inhibited CXCR4 ligand binding in intact cells and demonstrated that this effect was mimicked by known glycosaminoglycan binders, surfen and protamine sulfate. Disruption of putative GAG binding domains in CXCL17 prevented CXCR4 binding. This indicated that CXCL17 inhibited CXCR4 by a mechanism of action that potentially required the presence of a glycosaminoglycan-containing accessory protein. Together, our results revealed that CXCL17 is an endogenous inhibitor of CXCR4 and represents the next step in our understanding of the function of CXCL17 and regulation of CXCR4 signaling.
Collapse
Affiliation(s)
- Carl W. White
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Dimerix Limited, Melbourne, Australia
| | - Simon Platt
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Natasha Dale
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Sebastian Dekkers
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicholas D Kindon
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Barrie Kellam
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Michael J Stocks
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Dimerix Limited, Melbourne, Australia
| | - Stephen J. Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|
8
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
9
|
Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan TM, Karunarathne A. Spatiotemporal Optical Control of Gαq-PLCβ Interactions. ACS Synth Biol 2024; 13:242-258. [PMID: 38092428 PMCID: PMC11863898 DOI: 10.1021/acssynbio.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Collapse
Affiliation(s)
- Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Dinesh Kankanamge
- Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Dhanushan Wijayaratna
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Thomas M Mohan
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
10
|
Wang P, Raja A, Luscombe VB, Bataille CJR, Lucy D, Rogga VV, Greaves DR, Russell AJ. Development of Highly Potent, G-Protein Pathway Biased, Selective, and Orally Bioavailable GPR84 Agonists. J Med Chem 2024; 67:110-137. [PMID: 38146625 PMCID: PMC10788923 DOI: 10.1021/acs.jmedchem.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023]
Abstract
Orphan G-protein-coupled receptor 84 (GPR84) is a receptor that has been linked to cancer, inflammatory, and fibrotic diseases. We have reported DL-175 as a biased agonist at GPR84 which showed differential signaling via Gαi/cAMP and β-arrestin, but which is rapidly metabolized. Herein, we describe an optimization of DL-175 through a systematic structure-activity relationship (SAR) analysis. This reveals that the replacement of the naphthalene group improved metabolic stability and the addition of a 5-hydroxy substituent to the pyridine N-oxide group, yielding compounds 68 (OX04528) and 69 (OX04529), enhanced the potency for cAMP signaling by 3 orders of magnitude to low picomolar values. Neither compound showed detectable effects on β-arrestin recruitment up to 80 μM. Thus, the new GPR84 agonists 68 and 69 displayed excellent potency, high G-protein signaling bias, and an appropriate in vivo pharmacokinetic profile that will allow investigation of GPR84 biased agonist activity in vivo.
Collapse
Affiliation(s)
- Pinqi Wang
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Arun Raja
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Vincent B. Luscombe
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, U.K.
| | - Carole J. R. Bataille
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Daniel Lucy
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, U.K.
| | - Vanessa V. Rogga
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - David R. Greaves
- Sir
William Dunn School of Pathology, University
of Oxford, South Parks Road, Oxford OX1 3RE, U.K.
| | - Angela J. Russell
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Department
of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
11
|
Cho S, Lee H, Han YH, Park TS, Seo SW, Park TH. Design of an effective small expression tag to enhance GPCR production in E. coli-based cell-free and whole cell expression systems. Protein Sci 2023; 32:e4839. [PMID: 37967042 PMCID: PMC10682694 DOI: 10.1002/pro.4839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in sensory, immune, and tumor metastasis processes, making them valuable targets for pharmacological and sensing applications in various industries. However, most GPCRs have low production yields in Escherichia coli (E. coli) expression systems. To overcome this limitation, we introduced AT10 tag, an effective fusion tag that could significantly enhance expression levels of various GPCRs in E. coli and its derived cell-free protein synthesis (CFPS) system. This AT10 tag consisted of an A/T-rich gene sequence designed via optimization of translation initiation rate. It is translated into a short peptide sequence of 10 amino acids at the N-terminus of GPCRs. Additionally, effector proteins could be utilized to suppress cytotoxicity caused by membrane protein expression, further boosting GPCR production in E. coli. Enhanced expression of various GPCRs using this AT10 tag is a promising approach for large-scale production of functional GPCRs in E. coli-based CFPS and whole cell systems, enabling their potential utilization across a wide range of industrial applications.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
| | - Yong Hee Han
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tae Shin Park
- Receptech Research Institute, Receptech Inc.SiheungRepublic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical ProcessSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
12
|
Llinas del Torrent C, Raïch I, Gonzalez A, Casajuana-Martin N, Lillo J, Rebassa JB, Ferreiro-Vera C, Sánchez de Medina V, Franco R, Navarro G, Pardo L. The Leu/Val 6.51 Side Chain of Cannabinoid Receptors Regulates the Binding Mode of the Alkyl Chain of Δ 9-Tetrahydrocannabinol. J Chem Inf Model 2023; 63:5927-5935. [PMID: 37644761 PMCID: PMC10523433 DOI: 10.1021/acs.jcim.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 08/31/2023]
Abstract
(-)-Δ9-trans-tetrahydrocannabinol (THC), which is the principal psychoactive constituent of Cannabis, mediates its action by binding to two members of the G-protein-coupled receptor (GPCR) family: the cannabinoid CB1 (CB1R) and CB2 (CB2R) receptors. Molecular dynamics simulations showed that the pentyl chain of THC could adopts an I-shape conformation, filling an intracellular cavity between Phe3.36 and Trp6.48 for initial agonist-induced receptor activation, in CB1R but not in CB2R. This cavity opens to the five-carbon chain of THC by the conformational change of the γ-branched, flexible, Leu6.51 side chain of CB1R, which is not feasible by the β-branched, mode rigid, Val6.51 side chain of CB2R. In agreement with our computational results, THC could not decrease the forskolin-induced cAMP levels in cells expressing mutant CB1RL6.51V receptor but could activate the mutant CB2RV6.51L receptor as efficiently as wild-type CB1R. Additionally, JWH-133, a full CB2R agonist, contains a branched dimethyl moiety in the ligand chain that bridges Phe3.36 and Val6.51 for receptor activation. In this case, the substitution of Val6.51 to Leu in CB2R makes JWH-133 unable to activate CB2RV6.51L. In conclusion, our combined computational and experimental results have shown that the amino acid at position 6.51 is a key additional player in the initial mechanism of activation of GPCRs that recognize signaling molecules derived from lipid species.
Collapse
Affiliation(s)
- Claudia Llinas del Torrent
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Iu Raïch
- Department
of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Angel Gonzalez
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Nil Casajuana-Martin
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Lillo
- Department
of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department
of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | - Rafael Franco
- Department
of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Gemma Navarro
- Centro
de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Department
of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute
of Neuroscience, University of Barcelona
(NeuroUB), Av Joan XXIII
27-31, 08028 Barcelona, Spain
| | - Leonardo Pardo
- Laboratory
of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
13
|
Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan TM, Karunarathne A. Spatiotemporal optical control of Gαq-PLCβ interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552801. [PMID: 37609229 PMCID: PMC10441412 DOI: 10.1101/2023.08.10.552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins, including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with a broad physiological and pathological significance. Compared to other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal - debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Collapse
|
14
|
El-Atawneh S, Goldblum A. Activity Models of Key GPCR Families in the Central Nervous System: A Tool for Many Purposes. J Chem Inf Model 2023. [PMID: 37257045 DOI: 10.1021/acs.jcim.2c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
G protein-coupled receptors (GPCRs) are targets of many drugs, of which ∼25% are indicated for central nervous system (CNS) disorders. Drug promiscuity affects their efficacy and safety profiles. Predicting the polypharmacology profile of compounds against GPCRs can thus provide a basis for producing more precise therapeutics by considering the targets and the anti-targets in that family of closely related proteins. We provide a tool for predicting the polypharmacology of compounds within prominent GPCR families in the CNS: serotonin, dopamine, histamine, muscarinic, opioid, and cannabinoid receptors. Our in-house algorithm, "iterative stochastic elimination" (ISE), produces high-quality ligand-based models for agonism and antagonism at 31 GPCRs. The ISE models correctly predict 68% of CNS drug-GPCR interactions, while the "similarity ensemble approach" predicts only 33%. The activity models correctly predict 56% of reported activities of DrugBank molecules for these CNS receptors. We conclude that the combination of interactions and activity profiles generated by screening through our models form the basis for subsequent designing and discovering novel therapeutics, either single, multitargeting, or repurposed.
Collapse
Affiliation(s)
- Shayma El-Atawneh
- Molecular Modelling and Drug Design Lab, Institute for Drug Research and Fraunhofer Project Center for Drug Discovery and Delivery, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| | - Amiram Goldblum
- Molecular Modelling and Drug Design Lab, Institute for Drug Research and Fraunhofer Project Center for Drug Discovery and Delivery, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91905, Israel
| |
Collapse
|
15
|
Cai B, El Daibani A, Bai Y, Che T, Krusemark CJ. Direct Selection of DNA-Encoded Libraries for Biased Agonists of GPCRs on Live Cells. JACS AU 2023; 3:1076-1088. [PMID: 37124302 PMCID: PMC10131204 DOI: 10.1021/jacsau.2c00674] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest superfamily of human membrane target proteins for approved drugs. GPCR ligands can have a complex array of pharmacological activities. Among these activities, biased agonists have potential to serve as both chemical probes to understand specific aspects of receptor signaling and therapeutic leads with more specific, desired activity. Challenges exist, however, in the development of new biased activators due, in part, to the low throughput of traditional screening approaches. DNA-encoded chemical libraries (DELs) dramatically improve the throughput of drug discovery by allowing a collective selection, rather than discrete screening, of large compound libraries. The use of DELs has been largely limited to affinity-based selections against purified protein targets, which identify binders only. Herein, we report a split protein complementation approach that allows direct identification of DNA-linked molecules that induce the dimerization of two proteins. We used this selection with a DEL against opioid receptor GPCRs on living cells for the identification of small molecules that possess the specific function of activation of either β-arrestin or G protein signaling pathways. This approach was applied to δ-, μ-, and κ-opioid receptors and enabled the discovery of compound [66,66], a selective, G-protein-biased agonist of the κ-opioid receptor (EC50 = 100 nM, E max = 82%, Gi bias factor = 6.6). This approach should be generally applicable for the direct selection of chemical inducers of dimerization from DELs and expand the utility of DELs to enrich molecules with a specific and desired biochemical function.
Collapse
Affiliation(s)
- Bo Cai
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for
Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Amal El Daibani
- Center
for Clinical Pharmacology, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Yuntian Bai
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for
Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tao Che
- Center
for Clinical Pharmacology, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Casey J. Krusemark
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for
Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Tang TYC, Kim JS, Das A. Role of omega-3 and omega-6 endocannabinoids in cardiopulmonary pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:375-422. [PMID: 37236765 DOI: 10.1016/bs.apha.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Endocannabinoids are derived from dietary omega-3 and omega-6 fatty acids and play an important role in regulation of inflammation, development, neurodegenerative diseases, cancer, and cardiovascular diseases. They elicit this effect via interactions with cannabinoid receptors 1 and 2 which are also targeted by plant derived cannabinoid from cannabis. The evidence of the involvement of the endocannabinoid system in cardiopulmonary function comes from studies that show that cannabis consumption leads to cardiovascular effect such as arrythmia and is beneficial in lung cancer patients. Moreover, omega-3 and omega-6 endocannabinoids play several important roles in cardiopulmonary system such as causing airway relaxation, suppressing atherosclerosis and hypertension. These effects are mediated via the cannabinoids receptors that are abundant in the cardiopulmonary system. Overall, this chapter reviews the known role of phytocannabinoids and endocannabinoids in the cardiopulmonary context.
Collapse
Affiliation(s)
- Tiffany Y-C Tang
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Justin S Kim
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States
| | - Aditi Das
- School of Chemistry and Biochemistry, College of Sciences. Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, United States.
| |
Collapse
|
17
|
Chen X, Isambert N, López-López R, Giovannini M, Pognan N, Kapoor S, Quinlan M, You B, Cui X, Rahmanzadeh G, Mau-Sorensen M. Effect of capmatinib on the pharmacokinetics of substrates of CYP3A (midazolam) and CYP1A2 (caffeine) in patients with MET-dysregulated solid tumours. Br J Clin Pharmacol 2023; 89:1046-1055. [PMID: 36131603 DOI: 10.1111/bcp.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Preclinical studies showed that capmatinib reversibly inhibits cytochrome P450 (CYP) 3A4 and CYP1A2 in a time-dependent manner. In this study, we evaluated the effect of capmatinib on the exposure of sensitive substrates of CYP3A (midazolam) and CYP1A2 (caffeine) in patients with mesenchymal-epithelial transition (MET)-dysregulated solid tumours. Besides pharmacokinetics, we assessed treatment response and safety. METHODS This open-label, multicentre, single-sequence study consisted of a molecular prescreening period, a screening/baseline period of ≤28 days and a drug-drug interaction (DDI) phase of 12 days. On day 1 of the DDI phase, 37 patients received a single oral dose of midazolam 2.5 mg and caffeine 100 mg as a two-drug cocktail. Capmatinib 400 mg bid was administered from day 4 on a continuous dosing schedule. On day 9 of the DDI phase, patients were re-exposed to midazolam and caffeine. After the DDI phase, patients received capmatinib on continuous 21-day cycles until disease progression at the discretion of the investigator. RESULTS A 22% (90% confidence interval [CI] 7-38%) increase in the midazolam maximum plasma concentration (Cmax ) was noted when administered with capmatinib, but this was deemed not clinically meaningful. Co-administration with capmatinib resulted in 134% (90% CI 108-163%) and 122% (90% CI 95-153%) increases in the caffeine area under the plasma concentration-time curve from time zero to infinity (AUCinf ) and area under the plasma concentration-time curve from time zero to the last measurable point (AUClast ), respectively, with no change in Cmax . Adverse events were consistent with the known capmatinib safety profile. No new safety signals were reported in this study. CONCLUSION The data from this study demonstrated that capmatinib is a moderate CYP1A2 inhibitor. Capmatinib administration did not cause any clinically relevant changes in midazolam exposure.
Collapse
Affiliation(s)
- Xinhui Chen
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | - Nicolas Isambert
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Rafael López-López
- Medical Oncology, University Clinical Hospital-IDIS-CIBERONC, Santiago de Compostela, Spain
| | - Monica Giovannini
- Global Drug Development, Novartis Services Inc., Princeton, New Jersey, USA
| | - Nathalie Pognan
- Global Drug Development, Novartis Pharma S.A.S., Rueil-Malmaison, France
| | - Shruti Kapoor
- Global Drug Development, Novartis Services Inc., Princeton, New Jersey, USA
| | - Michelle Quinlan
- Global Drug Development, Novartis Services Inc., Princeton, New Jersey, USA
| | - Benoit You
- Medical Oncology, Institut de Cancérologie des Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Cicly, Gineco, Lyon, France
| | - Xiaoming Cui
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | | | - Morten Mau-Sorensen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
18
|
Yu HX, Li Y, Ezeorba T, Mo HL, Zhang ZH, Yang QY, Wang LX. Molecular characterization and functional exploration of GPR84 in Chinese Giant Salamander (Andrias davidianus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104526. [PMID: 36058385 DOI: 10.1016/j.dci.2022.104526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The G protein-coupled receptor 84 (GPR84) is a putative medium-chain fatty acids (MCFAs) receptor involved in immune regulation and other metabolic processes. Most available studies focused on the GPR84 characterization from mammals, neglecting vital information that could be obtained from other levels of life, such as amphibians, necessary for an apt evolutionary understanding of the orphan GPR84. Hence, this study molecularly characterized and functionally explored the GPR84 from the Chinese Giant Salamander (Andrias davidianus). Therefore, we report that the Chinese Giant Salamander (CGS), one of the world's largest amphibians, expresses a GPR84 protein having 376 amino acids, with about 70% homologous to other amphibians and around 50% to human GPR84. Investigating the relative localized expression of gpr84 mRNA in CGS using quantitative PCR revealed the highest expression in the kidney and liver. Furthermore, four medium-chain fatty acids (MCFAs) at micromolar levels activated CGS-GPR84 transfected and expressed in HEK293 cells. In HEK293 cells, four different concentrations of MCFAs inhibited forskolin-induced cAMP accumulation and resulted in a dose-dependent increase in extracellular signal-regulated kinases 1 and 2 (ERK1/2). Interestingly, MCFAs activation of GPR84 concomitantly led to the upregulation of inflammatory mediators such as Nuclear Factor Kappa B (NF-κB) and IL-6. Conclusively, this study successfully elucidated the intriguing molecular and functional properties of CGS GPR84, particularly as an immune modulator, and has positioned the findings within the existing body of knowledge for a better overall understanding of GPR84, especially in amphibians.
Collapse
Affiliation(s)
- Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Timothy Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu, 0023442, Nigeria
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi-Hao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi-Yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Massachusetts, 001339, USA
| | - Li-Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
Wu FJ, Rieder PS, Abiko LA, Rößler P, Gossert AD, Häussinger D, Grzesiek S. Nanobody GPS by PCS: An Efficient New NMR Analysis Method for G Protein Coupled Receptors and Other Large Proteins. J Am Chem Soc 2022; 144:21728-21740. [DOI: 10.1021/jacs.2c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Feng-Jie Wu
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Pascal S. Rieder
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | | - Philip Rößler
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel Häussinger
- Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
20
|
Lednovich KR, Gough S, Brenner M, Qadri T, Layden BT. G
Protein‐Coupled Receptors in Metabolic Disease. GPCRS AS THERAPEUTIC TARGETS 2022:521-552. [DOI: 10.1002/9781119564782.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
21
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
22
|
Tsantoulas C, Ng A, Pinto L, Andreou AP, McNaughton PA. HCN2 Ion Channels Drive Pain in Rodent Models of Migraine. J Neurosci 2022; 42:7513-7529. [PMID: 36658457 PMCID: PMC9546469 DOI: 10.1523/jneurosci.0721-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Migraine is believed to be initiated by neuronal activity in the CNS, that triggers excitation of nociceptive trigeminal ganglion (TG) nerve fibers innervating the meninges and thus causes a unilateral throbbing headache. Drugs that precipitate or potentiate migraine are known to elevate intracellular levels of the cyclic nucleotides cAMP or cGMP, while anti-migraine treatments couple to signaling pathways that reduce cAMP or cGMP, suggesting an involvement of these cyclic nucleotides in migraine. Members of the HCN ion channel family are activated by direct binding of cAMP or cGMP, suggesting in turn that a member of this family may be a critical trigger of migraine. Here, we show that pharmacological block or targeted genetic deletion of HCN2 abolishes migraine-like pain in three rodent migraine models (in both sexes). Induction of migraine-like pain in these models triggered expression of the protein C-FOS, a marker of neuronal activity, in neurons of the trigeminocervical complex (TCC), where TG neurons terminate, and C-FOS expression was reversed by peripheral HCN2 inhibition. HCN2 block in vivo inhibited both evoked and spontaneous neuronal activity in nociceptive TG neurons. The NO donor glyceryl trinitrate (GTN) caused an increase in cGMP in the TG in vivo Exposing isolated TG neurons to GTN caused a rightward shift in the voltage dependence of HCN currents and thus increased neuronal excitability. This work identifies HCN2 as a novel target for the development of migraine treatments.SIGNIFICANCE STATEMENT Migraine is believed to be initiated by localized excitability of neurons within the CNS, but the most disturbing symptom, the characteristic throbbing migraine headache pain, is widely agreed to be caused by activity in afferent pain-sensitive (nociceptive) nerve fibers of the trigeminal nerve. Using a variety of preclinical models of migraine, we identify the HCN2 ion channel as the molecular source of trigeminal hyperexcitability in migraine and we show that pharmacological or genetic inhibition of HCN2 can relieve migraine-like pain symptoms. The work highlights the HCN2 ion channel as a potential pharmacological target for the development of novel analgesics effective in migraine.
Collapse
Affiliation(s)
- Christoforos Tsantoulas
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Aidan Ng
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Larissa Pinto
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Anna P Andreou
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
- The Headache Centre, Guy's and St Thomas' NHS Trust, London, SE1 7EH, United Kingdom
| | - Peter A McNaughton
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
23
|
Gao X, DeSantis AJ, Enten GA, Weche M, Marcet JE, Majetschak M. Heteromerization between α 1B -adrenoceptor and chemokine (C-C motif) receptor 2 biases α 1B -adrenoceptor signaling: Implications for vascular function. FEBS Lett 2022; 596:2706-2716. [PMID: 35920096 PMCID: PMC9830583 DOI: 10.1002/1873-3468.14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023]
Abstract
Previously, we reported that chemokine (C-C motif) receptor 2 (CCR2) heteromerizes with α1B -adrenoceptor (α1B -AR) in leukocytes, through which α1B -AR controls CCR2. Whether such heteromers are expressed in human vascular smooth muscle cells (hVSMCs) is unknown. Bioluminescence resonance energy transfer confirmed formation of recombinant CCR2:α1b -AR heteromers. Proximity ligation assays detected CCR2:α1B -AR heteromers in hVSMCs and human mesenteric arteries. CCR2:α1B -AR heteromerization per se enhanced α1B -AR-mediated Gαq -coupling. Chemokine (C-C motif) ligand 2 (CCL2) binding to CCR2 inhibited Gαq activation via α1B -AR, cross-recruited β-arrestin to and induced internalization of α1B -AR in recombinant systems and in hVSMCs. Our findings suggest that CCR2 within CCR2:α1B -AR heteromers biases α1B -AR signaling and provide a mechanism for previous observations suggesting a role for CCL2/CCR2 in the regulation of cardiovascular function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jorge E Marcet
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
24
|
Myslivecek J. Multitargeting nature of muscarinic orthosteric agonists and antagonists. Front Physiol 2022; 13:974160. [PMID: 36148314 PMCID: PMC9486310 DOI: 10.3389/fphys.2022.974160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
25
|
Tang WW, Naga Prasad SV. Autoantibodies and Cardiomyopathy: Focus on Beta-1 Adrenergic Receptor Autoantibodies. J Cardiovasc Pharmacol 2022; 80:354-363. [PMID: 35323150 PMCID: PMC9452444 DOI: 10.1097/fjc.0000000000001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
ABSTRACT Antibody response to self-antigens leads to autoimmune response that plays a determinant role in cardiovascular disease outcomes including dilated cardiomyopathy (DCM). Although the origins of the self-reactive endogenous autoantibodies are not well-characterized, it is believed to be triggered by tissue injury or dysregulated humoral response. Autoantibodies that recognize G protein-coupled receptors are considered consequential because they act as modulators of downstream receptor signaling displaying a wide range of unique pharmacological properties. These wide range of pharmacological properties exhibited by autoantibodies has cellular consequences that is associated with progression of disease including DCM. Increase in autoantibodies recognizing beta-1 adrenergic receptor (β1AR), a G protein-coupled receptor critical for cardiac function, is observed in patients with DCM. Cellular and animal model studies have indicated pathological roles for the β1AR autoantibodies but less is understood about the molecular basis of their modulatory effects. Despite the recognition that β1AR autoantibodies could mediate deleterious outcomes, emerging evidence suggests that not all β1AR autoantibodies are deleterious. Recent clinical studies show that β1AR autoantibodies belonging to the IgG3 subclass is associated with beneficial cardiac outcomes in patients. This suggests that our understanding on the roles the β1AR autoantibodies play in mediating outcomes is not well-understood. Technological advances including structural determinants of antibody binding could provide insights on the modulatory capabilities of β1AR autoantibodies in turn, reflecting their diversity in mediating β1AR signaling response. In this study, we discuss the significance of the diversity in signaling and its implications in pathology.
Collapse
Affiliation(s)
- W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH
| | - Sathyamangla V. Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
26
|
Sinha S, Tam B, Wang SM. Applications of Molecular Dynamics Simulation in Protein Study. MEMBRANES 2022; 12:844. [PMID: 36135863 PMCID: PMC9505860 DOI: 10.3390/membranes12090844] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/29/2023]
Abstract
Molecular Dynamics (MD) Simulations is increasingly used as a powerful tool to study protein structure-related questions. Starting from the early simulation study on the photoisomerization in rhodopsin in 1976, MD Simulations has been used to study protein function, protein stability, protein-protein interaction, enzymatic reactions and drug-protein interactions, and membrane proteins. In this review, we provide a brief review for the history of MD Simulations application and the current status of MD Simulations applications in protein studies.
Collapse
Affiliation(s)
| | | | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
27
|
Das A, Gupta PK, Rana S. C5aR2 receptor: The genomic twin of the flamboyant C5aR1. J Cell Biochem 2022; 123:1841-1856. [PMID: 35977039 DOI: 10.1002/jcb.30320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
The complement fragment C5a is one of the most potent proinflammatory glycoproteins liberated by the activation of the biochemical cascade of the complement system. C5a is established to interact with a set of genomically related transmembrane receptors, like C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2) with comparable affinity. The C5aR1 is a classical G-protein-coupled receptor (GPCR), whereas C5aR2 is a nonclassical GPCR that tailors immune cell activity potentially through β-arrestins rather than G-proteins. Currently, the exact function of the C5aR2 is actively debated in the context of C5aR1, even though both C5aR1 and C5aR2 are coexpressed on myriads of tissues. The functional relevance of C5aR2 appears to be context-dependent compared to the C5aR1, which has received enormous attention for its role in both acute and chronic inflammatory diseases. In addition, the structure of C5aR2 and its interaction specificity toward C5a is not structurally elucidated in the literature so far. The current study has attempted to close the gap by generating highly refined model structures of C5aR2, respectively in free (inactive), complexed to C-terminal peptide of C5a (meta-active) and the C5a (active), embedded to a model palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer. The computational modeling and the 1.5-μs molecular dynamics data presented in the current study are expected to further enrich the understanding of C5a-C5aR2 interaction compared to C5a-C5aR1, which will surely help in elaborating the currently debated biological function of C5aR2 better in the foreseeable future.
Collapse
Affiliation(s)
- Aurosikha Das
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, Bhubaneswar, India
| | - Pulkit K Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, Bhubaneswar, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, Bhubaneswar, India
| |
Collapse
|
28
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
29
|
Kühnen P, Biebermann H, Wiegand S. Pharmacotherapy in Childhood Obesity. Horm Res Paediatr 2022; 95:177-192. [PMID: 34351307 DOI: 10.1159/000518432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increasing number of obese children and adolescence is a major problem in health-care systems. Currently, the gold standard for the treatment of these patients with obesity is a multicomponent lifestyle intervention. Unfortunately, this strategy is not leading to a substantial and long-lasting weight loss in the majority of patients. This is the reason why there is an urgent need to establish new treatment strategies for children and adolescents with obesity to reduce the risk for the development of any comorbidities like cardiovascular diseases or diabetes mellitus type 2. SUMMARY In this review, we outline available pharmacological therapeutic options for children and compare the available study data with the outcome of conservative treatment approaches. KEY MESSAGES We discussed, in detail, how knowledge about underlying molecular mechanisms might support the identification of effective antiobesity drugs in the future and in which way this might modulate current treatment strategies to support children and adolescence with obesity to lose body weight.
Collapse
Affiliation(s)
- Peter Kühnen
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Susanna Wiegand
- Center for Social-Pediatric Care/Pediatric Endocrinology and Diabetology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
30
|
The Chemokine (C-C Motif) Receptor 2 Antagonist INCB3284 Reduces Fluid Requirements and Protects From Hemodynamic Decompensation During Resuscitation From Hemorrhagic Shock. Crit Care Explor 2022; 4:e0701. [PMID: 35620770 PMCID: PMC9119637 DOI: 10.1097/cce.0000000000000701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Clinical correlations suggest that systemic chemokine (C-C motif) ligand (CCL) 2 release may contribute to blood pressure regulation and the development of hemodynamic instability during the early inflammatory response to traumatic-hemorrhagic shock. Thus, we investigated whether blockade of the principal CCL2 receptor chemokine (C-C motif) receptor (CCR) 2 affects blood pressure in normal animals, and hemodynamics and resuscitation fluid requirements in hemorrhagic shock models.
Collapse
|
31
|
Enten GA, Gao X, Strzelinski HR, Weche M, Liggett SB, Majetschak M. α 1B/D-adrenoceptors regulate chemokine receptor-mediated leukocyte migration via formation of heteromeric receptor complexes. Proc Natl Acad Sci U S A 2022; 119:e2123511119. [PMID: 35537053 PMCID: PMC9171806 DOI: 10.1073/pnas.2123511119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.
Collapse
Affiliation(s)
- Garrett A. Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Hannah R. Strzelinski
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
32
|
Wang PP, Jiang X, Zhu L, Zhou D, Hong M, He L, Chen L, Yao S, Zhao Y, Chen G, Wang C, Cui L, Cao Y, Zhu X. A G-Protein-Coupled Receptor Modulates Gametogenesis via PKG-Mediated Signaling Cascade in Plasmodium berghei. Microbiol Spectr 2022; 10:e0015022. [PMID: 35404079 PMCID: PMC9045217 DOI: 10.1128/spectrum.00150-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022] Open
Abstract
Gametogenesis is essential for malaria parasite transmission, but the molecular mechanism of this process remains to be refined. Here, we identified a G-protein-coupled receptor 180 (GPR180) that plays a critical role in signal transduction during gametogenesis in Plasmodium. The P. berghei GPR180 was predominantly expressed in gametocytes and ookinetes and associated with the plasma membrane in female gametes and ookinetes. Knockout of pbgpr180 (Δpbgpr180) had no noticeable effect on blood-stage development but impaired gamete formation and reduced transmission of the parasites to mosquitoes. Transcriptome analysis revealed that a large proportion of the dysregulated genes in the Δpbgpr180 gametocytes had assigned functions in cyclic nucleotide signal transduction. In the Δpbgpr180 gametocytes, the intracellular cGMP level was significantly reduced, and the cytosolic Ca2+ mobilization showed a delay and a reduction in the magnitude during gametocyte activation. These results suggest that PbGPR180 functions upstream of the cGMP-protein kinase G-Ca2+ signaling pathway. In line with this functional prediction, the PbGPR180 protein was found to interact with several transmembrane transporter proteins and the small GTPase Rab6 in activated gametocytes. Allele replacement of pbgpr180 with the P. vivax ortholog pvgpr180 showed equal competence of the transgenic parasite in sexual development, suggesting functional conservation of this gene in Plasmodium spp. Furthermore, an anti-PbGPR180 monoclonal antibody and the anti-PvGPR180 serum possessed robust transmission-blocking activities. These results indicate that GPR180 is involved in signal transduction during gametogenesis in malaria parasites and is a promising target for blocking parasite transmission. IMPORTANCE Environmental changes from humans to mosquitoes activate gametogenesis of the malaria parasite, an obligative process for parasite transmission, but how the signals are relayed remains poorly understood. Here, we show the identification of a Plasmodium G-protein-coupled receptor, GPR180, and the characterization of its function in gametogenesis. In P. berghei, GPR180 is dispensable for asexual development and gametocytogenesis, but its deletion impairs gametogenesis and reduces transmission to mosquitoes. GPR180 appears to function upstream of the cGMP-protein kinase G-Ca2+ signaling pathway and is required for the maximum activity of this pathway. Genetic complementation shows that the GPR180 ortholog from the human malaria parasite P. vivax was fully functional in P. berghei, indicating functional conservation of GPR180 in Plasmodium spp. With predominant expression and membrane association of GPR180 in sexual stages, GPR180 is a promising target for blocking transmission, and antibodies against GPR180 possess robust transmission-blocking activities.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuefeng Jiang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Zhou
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mingyang Hong
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lu He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Chengqi Wang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Bueschbell B, Manga P, Schiedel AC. The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Front Mol Biosci 2022; 9:873777. [PMID: 35495622 PMCID: PMC9039016 DOI: 10.3389/fmolb.2022.873777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Prashiela Manga
- Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York City, NY, United States
| | - Anke C. Schiedel
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
- *Correspondence: Anke C. Schiedel,
| |
Collapse
|
34
|
Díaz-Muñoz M, Hernández-Muñoz R, Butanda-Ochoa A. Structure-activity features of purines and their receptors: implications in cell physiopathology. MOLECULAR BIOMEDICINE 2022; 3:5. [PMID: 35079944 PMCID: PMC8789959 DOI: 10.1186/s43556-022-00068-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The purine molecular structure consists of fused pyrimidine and imidazole rings. Purines are main pieces that conform the structure of nucleic acids which rule the inheritance processes. Purines also work as metabolic intermediates in different cell functions and as messengers in the signaling pathways throughout cellular communication. Purines, mainly ATP and adenosine (ADO), perform their functional and pharmacological properties because of their structural/chemical characteristics that make them either targets of mutagenesis, mother frameworks for designing molecules with controlled effects (e.g. anti-cancer), or chemical donors (e.g., of methyl groups, which represent a potential chemoprotective action against cancer). Purines functions also come from their effect on specific receptors, channel-linked and G-protein coupled for ATP, and exclusively G-coupled receptors for ADO (also known as ADORAs), which are involved in cell signaling pathways, there, purines work as chemical messengers with autocrine, paracrine, and endocrine actions that regulate cell metabolism and immune response in tumor progression which depends on the receptor types involved in these signals. Purines also have antioxidant and anti-inflammatory properties and participate in the cell energy homeostasis. Therefore, purine physiology is important for a variety of functions relevant to cellular health; thus, when these molecules present a homeostatic imbalance, the stability and survival of the cellular systems become compromised.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México
| | - Armando Butanda-Ochoa
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
35
|
Modemann DJ, Maharadhika A, Yamoune S, Kreyenschmidt AK, Maaß F, Kremers S, Breunig C, Sahlmann CO, Bucerius JA, Stalke D, Wiltfang J, Bouter Y, Müller CE, Bouter C, Meller B. Development of high-affinity fluorinated ligands for cannabinoid subtype 2 receptor, and in vitro evaluation of a radioactive tracer for imaging. Eur J Med Chem 2022; 232:114138. [DOI: 10.1016/j.ejmech.2022.114138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
|
36
|
Myslivecek J. Social Isolation: How Can the Effects on the Cholinergic System Be Isolated? Front Pharmacol 2021; 12:716460. [PMID: 34916930 PMCID: PMC8670609 DOI: 10.3389/fphar.2021.716460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 01/31/2023] Open
Abstract
Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1–165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.
Collapse
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
37
|
Han B, Song M, Li L, Sun X, Lei Y. The Application of Nitric Oxide for Ocular Hypertension Treatment. Molecules 2021; 26:molecules26237306. [PMID: 34885889 PMCID: PMC8659272 DOI: 10.3390/molecules26237306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
Despite of various therapeutic methods for treating ocular hypertension and glaucoma, it still remains the leading cause of irreversible blindness. Intraocular pressure (IOP) lowering is the most effective way to slow disease progression and prevent blindness. Among the ocular hypotensive drugs currently in use, only a couple act on the conventional outflow system, which is the main pathway for aqueous humor outflow and the major lesion site resulting in ocular hypertension. Nitric oxide (NO) is a commendable new class of glaucoma drugs that acts on the conventional outflow pathway. An increasing number of nitric oxide donors have been developed for glaucoma and ocular hypertension treatment. Here, we will review how NO lowers IOP and the types of nitric oxide donors that have been developed. And a brief analysis of the advantages and challenges associated with the application will be made. The literature used in this review is based on Pubmed database search using ‘nitric oxide’ and ‘glaucoma’ as key words.
Collapse
|
38
|
Zeng Z, Ma C, Chen K, Jiang M, Vasu R, Liu R, Zhao Y, Zhang H. Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021; 10:2988. [PMID: 34831211 PMCID: PMC8616429 DOI: 10.3390/cells10112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Chunxiang Ma
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Kexin Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| | - Reshma Vasu
- West China School of Medicine, Sichuan University, Chengdu 410061, China;
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu 610064, China;
| | - Yinglan Zhao
- Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China;
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 410061, China; (Z.Z.); (C.M.); (K.C.); (M.J.)
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 410061, China
| |
Collapse
|
39
|
Hwang DDJ, Lee SJ, Kim JH, Lee SM. The Role of Neuropeptides in Pathogenesis of Dry Dye. J Clin Med 2021; 10:4248. [PMID: 34575359 PMCID: PMC8471988 DOI: 10.3390/jcm10184248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides are known as important mediators between the nervous and immune systems. Recently, the role of the corneal nerve in the pathogenesis of various ocular surface diseases, including dry eye disease, has been highlighted. Neuropeptides are thought to be important factors in the pathogenesis of dry eye disease, as suggested by the well-known role between the nervous and immune systems, and several recently published studies have elucidated the previously unknown pathogenic mechanisms involved in the role of the neuropeptides secreted from the corneal nerves in dry eye disease. Here, we reviewed the emerging concept of neurogenic inflammation as one of the pathogenic mechanisms of dry eye disease, the recent results of related studies, and the direction of future research.
Collapse
Affiliation(s)
- Daniel Duck-Jin Hwang
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| | - Seok-Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Jeong-Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03080, Korea; (S.-J.L.); (J.-H.K.)
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea
- Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon 34141, Korea
| | - Sang-Mok Lee
- Department of Ophthalmology, HanGil Eye Hospital, Incheon 21388, Korea;
- Department of Ophthalmology, College of Medicine, Catholic Kwandong University, Incheon 21388, Korea
| |
Collapse
|
40
|
Gomes-de-Souza L, Bianchi PC, Costa-Ferreira W, Tomeo RA, Cruz FC, Crestani CC. CB 1 and CB 2 receptors in the bed nucleus of the stria terminalis differently modulate anxiety-like behaviors in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110284. [PMID: 33609604 DOI: 10.1016/j.pnpbp.2021.110284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system is implicated in anxiety, but the brain sites involved are not completely understood. The bed nucleus of the stria terminalis (BNST) has been related to anxiety and responses to aversive threats. Besides, endocannabinoid neurotransmission acting via CB1 receptors was identified in the BNST. However, the presence of CB2 receptors and the role of BNST endocannabinoid system in anxiety-like behaviors have never been reported. Therefore, this study investigated the presence of CB1 and CB2 receptors in the BNST and their role in anxiety-like behaviors. For this, gene expression of the endocannabinoid receptors was evaluated in samples from anterior and posterior BNST. Besides, behaviors were evaluated in the elevated plus-maze (EPM) in unstressed rats (trait anxiety-like behavior) and after exposure to restraint stress (restraint-evoked anxiety-like behavior) in rats treated with either the CB1 receptor antagonist AM251 or the CB2 receptor antagonist JTE907 into the anterior BNST. The presence of CB1 and CB2 receptors gene expression was identified in anterior and posterior divisions of the BNST. Bilateral microinjection of AM251 into the anterior BNST dose-dependently increased EPM open arms exploration in unstressed animals and inhibited the anxiety-like behavior in the EPM evoked by restraint. Conversely, intra-BNST microinjection of JTE907 decreased EPM open arms exploration in a dose-dependent manner and inhibited restraint-evoked behavioral changes in the EPM. Taken together, these results indicate that CB1 and CB2 receptors present in the BNST are involved in control of anxiety-like behaviors, and control by the latter is affected by previous stress experience.
Collapse
Affiliation(s)
- Lucas Gomes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Paula C Bianchi
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Willian Costa-Ferreira
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Rodrigo A Tomeo
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil
| | - Fábio C Cruz
- Department of Pharmacology, Paulista Medicine School, São Paulo Federal University, São Paulo, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Joint UFSCar-UNESP Graduate Program in Physiological Sciences, São Carlos, SP, Brazil.
| |
Collapse
|
41
|
Kim TK, Atigadda VR, Brzeminski P, Fabisiak A, Tang EKY, Tuckey RC, Reiter RJ, Slominski AT. Detection of Serotonin, Melatonin, and Their Metabolites in Honey. ACS FOOD SCIENCE & TECHNOLOGY 2021; 1:1228-1235. [PMID: 35449872 PMCID: PMC9017714 DOI: 10.1021/acsfoodscitech.1c00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Melatonin and serotonin, products of tryptophan metabolism, are endogenous neurotransmitters and hormones. We have identified and quantified these metabolites in natural honey from Australia, USA, and Poland using a Xevo G2 XS qTof LC-MS. To help ensure correct product identification, some samples were prepurified by RP-HPLC based on the retention times of standards, prior to LC-MS. The concentrations of the metabolites of interest depended on the source of the honey. For Australian honey, levels for melatonin and 2-hydroxymelatonin were 0.91 and 0.68 ng/g, respectively. Melatonin was detected in one brand of US commercial honey at 0.48 ng/g, while a second brand contained serotonin at 88.2 ng/g. In Polish natural honey, 20.6 ng/g of serotonin and 40.8 ng/g of N-acetylserotonin (NAS) were detected, while in Polish commercial honey 25.9 ng/g of serotonin and 7.30 ng/g of NAS were present. We suggest that addictive and health-related properties of honey may be in part dependent on the presence of serotonin, melatonin, and their metabolites, and that these compounds may play a role in the colony activities of bees.
Collapse
Affiliation(s)
- Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Pawel Brzeminski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Adrian Fabisiak
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 77030, United States
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States; VA Medical Center, Birmingham, Alabama 35294, United States
| |
Collapse
|
42
|
Do TP, Al-Saoudi A, Ashina M. Future prophylactic treatments in migraine: Beyond anti-CGRP monoclonal antibodies and gepants. Rev Neurol (Paris) 2021; 177:827-833. [PMID: 34294458 DOI: 10.1016/j.neurol.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Migraine is ranked as a leading cause of years lived with disability among all neurological disorders. Therapies targeting the calcitonin gene-related peptide (CGRP) signaling pathway, including monoclonal antibodies against the receptor or ligand and small molecule CGRP receptor antagonists (gepants), are today approved for migraine prophylaxis with additional compounds expected to be introduced to the market soon. In this review, we consider other putative prophylactic migraine drugs in development, including compounds targeting G-protein coupled receptors, glutamate, ion channels, and neuromodulatory devices. Emergence of these new interventions could complement our current treatment armamentarium for migraine management.
Collapse
Affiliation(s)
- T P Do
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Al-Saoudi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Danish Knowledge Center on Headache Disorders, Glostrup, Denmark.
| |
Collapse
|
43
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
44
|
Olaniru OE, Cheng J, Ast J, Arvaniti A, Atanes P, Huang GC, King AJF, Jones PM, Broichhagen J, Hodson DJ, Persaud SJ. SNAP-tag-enabled super-resolution imaging reveals constitutive and agonist-dependent trafficking of GPR56 in pancreatic β-cells. Mol Metab 2021; 53:101285. [PMID: 34224919 PMCID: PMC8326393 DOI: 10.1016/j.molmet.2021.101285] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Members of the adhesion G protein-coupled receptor (aGPCR) subfamily are important actors in metabolic processes, with GPR56 (ADGRG1) emerging as a possible target for type 2 diabetes therapy. GPR56 can be activated by collagen III, its endogenous ligand, and by a synthetic seven amino-acid peptide (TYFAVLM; P7) contained within the GPR56 Stachel sequence. However, the mechanisms regulating GPR56 trafficking dynamics and agonist activities are not yet clear. Methods Here, we introduced SNAPf-tag into the N-terminal segment of GPR56 to monitor GPR56 cellular activity in situ. Confocal and super-resolution microscopy were used to investigate the trafficking pattern of GPR56 in native MIN6 β-cells and in MIN6 β-cells where GPR56 had been deleted by CRISPR-Cas9 gene editing. Insulin secretion, changes in intracellular calcium, and β-cell apoptosis were determined by radioimmunoassay, single-cell calcium microfluorimetry, and measuring caspase 3/7 activities, respectively, in MIN6 β-cells and human islets. Results SNAP-tag labelling indicated that GPR56 predominantly underwent constitutive internalisation in the absence of an exogenous agonist, unlike GLP-1R. Collagen III further stimulated GPR56 internalisation, whereas P7 was without significant effect. The overexpression of GPR56 in MIN6 β-cells did not affect insulin secretion. However, it was associated with reduced β-cell apoptosis, while the deletion of GPR56 made MIN6 β-cells more susceptible to cytokine-induced apoptosis. P7 induced a rapid increase in the intracellular calcium in MIN6 β-cells (in a GPR56-dependent manner) and human islets, and it also caused a sustained and reversible increase in insulin secretion from human islets. Collagen III protected human islets from cytokine-induced apoptosis, while P7 was without significant effect. Conclusions These data indicate that GPR56 exhibits both agonist-dependent and -independent trafficking in β-cells and suggest that while GPR56 undergoes constitutive signalling, it can also respond to its ligands when required. We have also identified that constitutive and agonist-dependent GPR56 activation is coupled to protect β-cells against apoptosis, offering a potential therapeutic target to maintain β-cell mass in type 2 diabetes. GPR56 predominantly underwent constitutive internalisation in β-cells in the absence of exogenous agonist. The GPR56 agonists, collagen III and P7, showed differential effects on GPR56 trafficking and islet functions. Constitutive and agonist-dependent GPR56 activation is coupled to protection of β-cells against apoptosis.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Jordan Cheng
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, 4th floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK
| | - Julia Ast
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Anastasia Arvaniti
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Patricio Atanes
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Guo C Huang
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Shanta J Persaud
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
45
|
Plasticity of seven-transmembrane-helix receptor heteromers in human vascular smooth muscle cells. PLoS One 2021; 16:e0253821. [PMID: 34166476 PMCID: PMC8224933 DOI: 10.1371/journal.pone.0253821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recently, we reported that the chemokine (C-X-C motif) receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3) heteromerize with α1A/B/D-adrenoceptors (ARs) and arginine vasopressin receptor 1A (AVPR1A) in recombinant systems and in rodent and human vascular smooth muscle cells (hVSMCs). In these studies, we observed that heteromerization between two receptor partners may depend on the presence and the expression levels of other partnering receptors. To test this hypothesis and to gain initial insight into the formation of these receptor heteromers in native cells, we utilized proximity ligation assays in hVSMCs to visualize receptor-receptor proximity and systematically studied how manipulation of the expression levels of individual protomers affect heteromerization patterns among other interacting receptor partners. We confirmed subtype-specific heteromerization between endogenously expressed α1A/B/D-ARs and detected that AVPR1A also heteromerizes with α1A/B/D-ARs. siRNA knockdown of CXCR4 and of ACKR3 resulted in a significant re-arrangement of the heteromerization patterns among α1-AR subtypes. Similarly, siRNA knockdown of AVPR1A significantly increased heteromerization signals for seven of the ten receptor pairs between CXCR4, ACKR3, and α1A/B/D-ARs. Our findings suggest plasticity of seven transmembrane helix (7TM) receptor heteromerization in native cells and could be explained by a supramolecular organization of these receptors within dynamic clusters in the plasma membrane. Because we previously observed that recombinant CXCR4, ACKR3, α1a-AR and AVPR1A form hetero-oligomeric complexes composed of 2–4 different protomers, which show signaling properties distinct from individual protomers, re-arrangements of receptor heteromerization patterns in native cells may contribute to the phenomenon of context-dependent GPCR signaling. Furthermore, these findings advise caution in the interpretation of functional consequences after 7TM receptor knockdown in experimental models. Alterations of the heteromerization patterns among other receptor partners may alter physiological and pathological responses, in particular in more complex systems, such as studies on the function of isolated organs or in in vivo experiments.
Collapse
|
46
|
DeSantis AJ, Enten GA, Gao X, Majetschak M. Chemokine receptor antagonists with α 1-adrenergic receptor blocker activity. J Basic Clin Physiol Pharmacol 2021; 33:519-523. [PMID: 34144642 DOI: 10.1515/jbcpp-2020-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Chemokine receptor antagonists are being explored for their therapeutic potential in various disease processes. As the chemokine (C-C motif) receptor 2 (CCR2) antagonist RS504393 is known to compete with ligand binding to α1-adrenoceptors, we tested a panel of 10 CCR antagonists for interactions with α1-adrenoceptors to evaluate potential cardiovascular activities and side-effect profiles. METHODS The PRESTO-Tango β-arrestin recruitment assay was utilized to test whether the CCR antagonists interfere with α1b-AR activation upon stimulation with phenylephrine. Pressure myography with isolated rat resistance arteries was employed to assess their effects on phenylephrine-induced vasoconstriction. The following antagonists were tested: CCR1-BX471, BX513, BI639667; CCR2-RS504393, INCB3284; CCR3-SB328437; and CCR4-AZD2098, and C021; CCR5-Maraviroc; CCR10-BI6901. The pan-α1-adrenoceptor antagonist prazosin was used as control. RESULTS Among the CCR antagonists tested, RS504393, BX513, and C021 inhibited phenylephrine-induced β-arrestin recruitment to α1b-adrenoceptor and phenylephrine-induced vasoconstriction. While RS504393 functioned as a competitive α1-adrenoceptor blocker, BX513 and C021 functioned as noncompetitive α1-adrenoceptor antagonists in both assay systems. Furthermore, RS504393, BX513, and C021 dose-dependently dilated arteries that were fully preconstricted with phenylephrine. CONCLUSIONS Our data suggest that CCR antagonists should be screened for cross-reactivity with α1-adrenoceptors to exclude potential adverse cardiovascular effects when used as anti inflammatory drugs.
Collapse
Affiliation(s)
| | - Garrett A Enten
- Departments of Surgery and Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Xianlong Gao
- Department of Surgery, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
47
|
Gao X, Enten GA, DeSantis AJ, Majetschak M. Class A G protein-coupled receptors assemble into functional higher-order hetero-oligomers. FEBS Lett 2021; 595:1863-1875. [PMID: 34032285 DOI: 10.1002/1873-3468.14135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Although class A seven-transmembrane helix (7TM) receptor hetero-oligomers have been proposed, information on the assembly and function of such higher-order hetero-oligomers is not available. Utilizing bioluminescence resonance energy transfer (BRET), bimolecular luminescence/fluorescence complementation (BiLC/BiFC), and BiLC/BiFC BRET in HEK293T cells, we provide evidence that chemokine (C-X-C motif) receptor 4, atypical chemokine receptor 3, α1a -adrenoceptor, and arginine vasopressin receptor 1A form hetero-oligomers composed of 2-4 different protomers. We show that hetero-oligomerization per se and ligand binding to individual protomers regulate agonist-induced coupling to the signaling transducers of interacting receptor partners. Our findings support the concept that receptor hetero-oligomers form supramolecular machineries with molecular signaling properties distinct from the individual protomers. These findings provide a mechanism for the phenomenon of context-dependent receptor function.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
48
|
Mravec B. Neurobiology of Cancer: Introduction of New Drugs in the Treatment and Prevention of Cancer. Int J Mol Sci 2021; 22:6115. [PMID: 34204103 PMCID: PMC8201304 DOI: 10.3390/ijms22116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Research on the neurobiology of cancer, which lies at the border of neuroscience and oncology, has elucidated the mechanisms and pathways that enable the nervous system to modulate processes associated with cancer initiation and progression. This research has also shown that several drugs which modulate interactions between the nervous system and the tumor micro- and macroenvironments significantly reduced the progression of cancer in animal models. Encouraging results were also provided by prospective clinical trials investigating the effect of drugs that reduce adrenergic signaling on the course of cancer in oncological patients. Moreover, it has been shown that reducing adrenergic signaling might also reduce the incidence of cancer in animal models, as well as in humans. However, even if many experimental and clinical findings have confirmed the preventive and therapeutic potential of drugs that reduce the stimulatory effect of the nervous system on processes related to cancer initiation and progression, several questions remain unanswered. Therefore, the aim of this review is to critically evaluate the efficiency of these drugs and to discuss questions that need to be answered before their introduction into conventional cancer treatment and prevention.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia; ; Tel.: +421-(2)-59357527; Fax: +421-(2)-59357601
- Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
49
|
Maeda S, Shiimura Y, Asada H, Hirata K, Luo F, Nango E, Tanaka N, Toyomoto M, Inoue A, Aoki J, Iwata S, Hagiwara M. Endogenous agonist-bound S1PR3 structure reveals determinants of G protein-subtype bias. SCIENCE ADVANCES 2021; 7:7/24/eabf5325. [PMID: 34108205 PMCID: PMC8189593 DOI: 10.1126/sciadv.abf5325] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/21/2021] [Indexed: 05/15/2023]
Abstract
Sphingosine-1-phosphate (S1P) regulates numerous important physiological functions, including immune response and vascular integrity, via its cognate receptors (S1PR1 to S1PR5); however, it remains unclear how S1P activates S1PRs upon binding. Here, we determined the crystal structure of the active human S1PR3 in complex with its natural agonist S1P at 3.2-Å resolution. S1P exhibits an unbent conformation in the long tunnel, which penetrates through the receptor obliquely. Compared with the inactive S1PR1 structure, four residues surrounding the alkyl tail of S1P (the "quartet core") exhibit orchestrating rotamer changes that accommodate the moiety, thereby inducing an active conformation. In addition, we reveal that the quartet core determines G protein selectivity of S1PR3. These results offer insight into the structural basis of activation and biased signaling in G protein-coupled receptors and will help the design of biased ligands for optimized therapeutics.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuki Shiimura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
| | - Fangjia Luo
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Nobuo Tanaka
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5165, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
50
|
Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G. Microglial Adenosine Receptors: From Preconditioning to Modulating the M1/M2 Balance in Activated Cells. Cells 2021; 10:1124. [PMID: 34066933 PMCID: PMC8148598 DOI: 10.3390/cells10051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal survival depends on the glia, that is, on the astroglial and microglial support. Neurons die and microglia are activated not only in neurodegenerative diseases but also in physiological aging. Activated microglia, once considered harmful, express two main phenotypes: the pro-inflammatory or M1, and the neuroprotective or M2. When neuroinflammation, i.e., microglial activation occurs, it is important to achieve a good M1/M2 balance, i.e., at some point M1 microglia must be skewed into M2 cells to impede chronic inflammation and to afford neuronal survival. G protein-coupled receptors in general and adenosine receptors in particular are potential targets for increasing the number of M2 cells. This article describes the mechanisms underlying microglial activation and analyzes whether these cells exposed to a first damaging event may be ready to be preconditioned to better react to exposure to more damaging events. Adenosine receptors are relevant due to their participation in preconditioning. They can also be overexpressed in activated microglial cells. The potential of adenosine receptors and complexes formed by adenosine receptors and cannabinoids as therapeutic targets to provide microglia-mediated neuroprotection is here discussed.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| | - Rafael Rivas-Santisteban
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Research Center, Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28034 Madrid, Spain;
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|