1
|
Qi J, Shao Y, Chen L, Zhu D. GSNO induced mitochondrial Cx43 nitrosylation in cardiomyocyte differentiation from mouse ES cells in vitro. Biochem Pharmacol 2025; 237:116955. [PMID: 40280246 DOI: 10.1016/j.bcp.2025.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
S-nitrosoglutathione (GSNO), considered vital to S-nitrosylation of proteins, has been found fundamentally important to the cardiomyocytes (CMs) maturation. Our previous studies demonstrated that GSNO treatment significantly enhanced the S-nitrosylation of 104 proteins during the differentiation of mouse embryonic stem cells (ESCs) into CMs. Mitochondrial Cx43 (mtCx43), a membrane protein implicated in the intercellular communication, also plays a pivotal role in CMs regeneration from stem cells. However, the involvement of mtCx43 S-nitrosylation in GSNO-induced myocardial differentiation has not been fully elucidated. In this study, we employed an ESCs-derived CMs differentiation model to elucidate the mechanisms underlying GSNO-induced cardiogenesis. Our findings revealed that GSNO treatment significantly up-regulated mitochondrial transmembrane potential, ATP production, reactive oxygen species (ROS) levels, respiratory chain complex Ι activity and mtCx43 hemichannel permeability in embryoid bodies (EBs). Furthermore, S-nitrosylation of mtCx43 was markedly enhanced in differentiating EBs after GSNO treatment. Overexpression of mtCx43 further amplified the pro-mitochondrial maturation effects of GSNO, whereas overexpression of a mutant form, mtCx43C271A attenuated this effect. To investigate the functional role of mtCx43 hemichannels, we pretreated EBs with Gap19, a specific mtCx43 hemichannel blocker, followed by GSNO administration. Gap19 significantly reduced in mitofusin 2 (Mfn2) expression, thereby impairing mitochondrial maturation and function. In addition, Gap19 treatment abrogated the pro-cardiogenic effects of mtCx43 S-nitrosylation. Furthermore, we demonstrated that mtCx43 S-nitrosylation-induced cardiac differentiation was dependent on mitochondrial Ca2+ uptake. In conclusion, GSNO-induced S-nitrosylation of mtCx43 enhances mitochondrial function in EBs by promoting the opening of mtCx43 hemichannels, thus facilitating the targeted differentiation of ESCs into CMs. These findings provide novel insights into the role of mtCx43 S-nitrosylation in mitochondrial regulation and cardiac lineage commitment.
Collapse
Affiliation(s)
- Jiayu Qi
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang University, Hangzhou 310058, China
| | - Ying Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang University, Hangzhou 310058, China; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liting Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang University, Hangzhou 310058, China
| | - Danyan Zhu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021; 22:ijms221910186. [PMID: 34638526 PMCID: PMC8507914 DOI: 10.3390/ijms221910186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.
Collapse
Affiliation(s)
- D. Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xinyan Leng
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Jianxiang Xue
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
3
|
DeLalio LJ, Isakson BE. ZP1609/danegaptide and mitochondrial connexin hemichannels: a harbinger for peptide drug design. Br J Pharmacol 2017; 174:2606-2607. [PMID: 28567717 DOI: 10.1111/bph.13891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/01/2022] Open
Abstract
LINKED ARTICLES This article is a Commentary on Boengler K, Bulic M, Schreckenberg R, Schlüter K-D, Schulz R (2017). The gap junction modifier ZP1609 decreases cardiomyocyte hypercontracture following ischaemia/reperfusion independent from mitochondrial connexin 43. Br J Pharmacol 174: 2060-2073. https://doi.org/10.1111/bph.13804.
Collapse
Affiliation(s)
- Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|