1
|
Melrose J. Glycosaminoglycans, Instructive Biomolecules That Regulate Cellular Activity and Synaptic Neuronal Control of Specific Tissue Functional Properties. Int J Mol Sci 2025; 26:2554. [PMID: 40141196 PMCID: PMC11942259 DOI: 10.3390/ijms26062554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Glycosaminoglycans (GAGs) are a diverse family of ancient biomolecules that evolved over millennia as key components in the glycocalyx that surrounds all cells. GAGs have molecular recognition and cell instructive properties when attached to cell surface and extracellular matrix (ECM) proteoglycans (PGs), which act as effector molecules that regulate cellular behavior. The perception of mechanical cues which arise from perturbations in the ECM microenvironment allow the cell to undertake appropriate biosynthetic responses to maintain ECM composition and tissue function. ECM PGs substituted with GAGs provide structural support to weight-bearing tissues and an ability to withstand shear forces in some tissue contexts. This review outlines the structural complexity of GAGs and the diverse functional properties they convey to cellular and ECM PGs. PGs have important roles in cartilaginous weight-bearing tissues and fibrocartilages subject to tension and high shear forces and also have important roles in vascular and neural tissues. Specific PGs have roles in synaptic stabilization and convey specificity and plasticity in the regulation of neurophysiological responses in the CNS/PNS that control tissue function. A better understanding of GAG instructional roles over cellular behavior may be insightful for the development of GAG-based biotherapeutics designed to treat tissue dysfunction in disease processes and in novel tissue repair strategies following trauma. GAGs have a significant level of sophistication over the control of cellular behavior in many tissue contexts, which needs to be fully deciphered in order to achieve a useful therapeutic product. GAG biotherapeutics offers exciting opportunities in the modern glycomics arena.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
2
|
Zhu Y, Li L, Wang S, Wang B, Dong L, Zhang Z, Wang Y, Li J, Zhang H, Lu H. Molecular mapping in head and neck adenoid cystic carcinoma by pathological grade using whole-exome sequencing and spatial transcriptome. Hum Pathol 2025; 157:105758. [PMID: 40107325 DOI: 10.1016/j.humpath.2025.105758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Our previous study demonstrated that pathological grades of adenoid cystic carcinoma (ACC) correlate with distinct prognoses and treatment strategies. To explore the molecular alterations underlying these grades, we performed whole-exome sequencing (WES) on 20 head and neck ACC samples from 12 patients, categorized into grade I-II, grade III, and high-grade transformation (HGT). Comprehensive analyses, including somatic mutations, chromosomal structural variations, and phylogenetic tree construction, were conducted. Spatial transcriptome (ST) technology was further employed to analyze gene expression, pseudo-time trajectories, and copy number variations in a grade III sample. WES revealed that high-grade (grade III and HGT) ACC tissues frequently harbor mutations in TP53, PI3K pathway genes, and chromatin remodelers. Phylogenetic analysis showed that higher-grade regions exhibit more subclonal mutations or a larger proportion of intergenerational mutations. Copy number analysis identified recurrent deletions of 1p36.33 and amplifications of 8q24.21/9p24.1 in high-grade samples, along with significant deletions on chr12 in both WES and ST. ST pathway enrichment and cell trajectory analyses indicated that high-grade clusters are more primitive and proliferative, while low-grade clusters display greater microenvironmental stability and interstitial specialization. These findings highlight the complex spatial heterogeneity associated with ACC pathological grades, providing critical insights into disease progression and guiding therapeutic strategies.
Collapse
Affiliation(s)
- Yuelu Zhu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Shun Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhe Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ying Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiangtao Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haifeng Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haizhen Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Appunni S, Saxena A, Ramamoorthy V, Zhang Y, Doke M, Nair SS, Khosla AA, Rubens M. Decorin: matrix-based pan-cancer tumor suppressor. Mol Cell Biochem 2025:10.1007/s11010-025-05224-z. [PMID: 39954173 DOI: 10.1007/s11010-025-05224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Studies have shown that decorin is a potent pan-cancer tumor suppressor that is under-expressed in most cancers. Decorin interacts with receptor tyrosine kinases and functions as a pan-receptor tyrosine kinase inhibitor, thereby suppressing oncogenic signals. Decorin deficiency promotes epithelial-to-mesenchymal transition and enhances cancer dissemination and metastasis. According to recent GLOBOCAN estimates, the most common cancers worldwide are breast, lung, prostate, colorectal, skin (non-melanoma), and stomach. Considering the burden of rising cancer incidence and the importance of discovering novel molecular markers and potential therapeutic agents for cancer management, we have outlined the possible expressional and clinicopathological significance of decorin in major cancers based on available pre-clinical and clinical studies. Measuring plasma decorin is a minimally invasive technique, and human studies have shown that it is useful in predicting clinical outcomes in cancer though it needs further validation. Oncolytic virus-mediated decorin gene transfer has shown significant anti-tumorigenic effects in pre-clinical studies, though its implication in human subjects is yet to be understood. Exogenous decorin delivery in experimental studies has been shown to mitigate cancer growth, but its therapeutic efficacy and safety are poorly understood. Future research is required to translate the tumor-suppressive action of decorin observed in preclinical experiments to therapeutic interventions in human subjects.
Collapse
Affiliation(s)
| | - Anshul Saxena
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
- Baptist Health South Florida, Miami, FL, 33176, USA
| | | | - Yanjia Zhang
- Baptist Health South Florida, Miami, FL, 33176, USA
| | - Mayur Doke
- Miller School of Medicine, University of Miami, Coral Gables, FL, 33146, USA
| | - Sudheesh S Nair
- School of Veterinary Medicine, Ross University, Basseterre, Saint Kitts and Nevis
| | | | - Muni Rubens
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33172, USA.
- Universidad Espíritu Santo, Samborondón, Ecuador.
| |
Collapse
|
4
|
Hollis A, Lukens JR. Role of inflammasomes and neuroinflammation in epilepsy. Immunol Rev 2025; 329:e13421. [PMID: 39523682 PMCID: PMC11744240 DOI: 10.1111/imr.13421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Epilepsy is a brain disorder characterized by recurrent seizures, which are brief episodes of abnormal electrical activity in the brain and involuntary movement that can lead to physical injury and loss of consciousness. Seizures are canonically accompanied by increased inflammatory cytokine production that promotes neuroinflammation, brain pathology, and seizure propagation. Understanding the source of pro-inflammatory cytokines which promote seizure pathogenesis could be a gateway to precision epilepsy drug design. This review discusses the inflammasome in epilepsy including its role in seizure propagation and negative impacts on brain health. The inflammasome is a multiprotein complex that coordinates IL-1β and IL-18 production in response to tissue damage, cellular stress, and infection. Clinical evidence for inflammasome signaling in epileptogenesis is reviewed followed by a discussion of emerging strategies to modulate inflammasome activity in epilepsy.
Collapse
Affiliation(s)
- Ava Hollis
- Center for Brain Immunology and Glia (BIG), Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
5
|
Wu N, Wang J, Fan M, Liang Y, Wei Qi X, Deng F, Zeng F. Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance. Cell Oncol (Dordr) 2024; 47:2163-2181. [PMID: 39466536 DOI: 10.1007/s13402-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The small leucine-rich proteoglycan decorin (DCN) is recognized for its diverse roles in tissue homeostasis and malignant progression. Nevertheless, the regulatory effects of DCN on bladder cancer stem cells (BCSCs) and the underlying mechanisms in muscle-invasive bladder cancer (MIBC) remain to be elucidated. METHODS The study obtained data (including scRNA-seq, clinicopathological characteristics, and survival) were acquired from TCGA and GEO. The BCSCs were cultured by enriching the suspension culture in a serum-free medium, followed by flow cytometry sorting. Overexpression/knockdown was constructed by utilizing lentivirus. The surface biomarkers of cancer stem cells were identified via flow cytometry. Cell proliferation and self-renewal were evaluated by CCK8 and Sphere formation assays, and in vivo tumor growth was evaluated with subcutaneous xenografts. RESULTS Total DCN expression was significantly elevated in muscle-invasive bladder cancer (MIBC) and was associated with poor prognosis. The ΔDCN isoform, which lacks glycosylation sites, was identified in bladder cancer stem cells (BCSCs) derived from clinical tissue samples and bladder cancer cell lines. Suppression of ΔDCN expression resulted in a reduction of BCSC stemness. Both in vitro and in vivo experiments indicated that overexpression of full-length DCN inhibited stemness within the extracellular matrix. Conversely, overexpression of ΔDCN and the introduction of exogenous recombinant decorin protein in ΔDCN-knockdown BCSC-SW780 cell lines enhanced stemness within the cytoplasm. The ΔDCN isoform exhibited resistance to gemcitabine chemotherapy in vitro. CONCLUSION Non-glycanated ΔDCN isoforms were identified in bladder cancer stem cells (BCSCs), where they exhibited differential cytoplasmic localization and promoted oncogenic effects by inducing a stemness phenotype and conferring resistance to gemcitabine chemotherapy. These oncogenic effects are in stark contrast to the anti-tumor functions of glycosylated DCN in the extracellular matrix. The ratio of ΔDCN isoforms to glycosylated DCN is pivotal in predicting tumor progression and therapeutic resistance.
Collapse
Affiliation(s)
- Nisha Wu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, P.R. China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Scientific Research Center, Department of Biobank, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P.R. China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanling Liang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, P.R. China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Hjorth M, Egan CL, Telles GD, Pal M, Gallego-Ortega D, Fuller OK, McLennan ED, Gillis RD, Oh TG, Muscat GEO, Tegegne S, Mah MSM, Skhinas J, Estevez E, Adams TE, McKay MJ, Molloy M, Watt KI, Qian H, Gregorevic P, Cox TR, Hojman P, Midtgaard J, Christensen JF, Friedrichsen M, Iozzo RV, Sloan EK, Drew BG, Wojtaszewski JFP, Whitham M, Febbraio MA. Decorin, an exercise-induced secretory protein, is associated with improved prognosis in breast cancer patients but does not mediate anti-tumorigenic tissue crosstalk in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100991. [PMID: 39341495 PMCID: PMC11809198 DOI: 10.1016/j.jshs.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. The purpose of this study was to examine the mechanisms behind the protective effects of exercise. METHODS We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Casey L Egan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Guilherme D Telles
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; Center of Study in Exercise and Oncology (CEEO), Campinas 13083-888, Brazil
| | - Martin Pal
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, University of Technology, Sydney, NSW 2678, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Emma D McLennan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Ryan D Gillis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tae Gyu Oh
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA; Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - George E O Muscat
- Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Surafel Tegegne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Michael S M Mah
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Joanna Skhinas
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Emma Estevez
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Matthew J McKay
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Kevin I Watt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3053, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hongwei Qian
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Paul Gregorevic
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | - Martin Friedrichsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Renato V Iozzo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Prahran, VIC 3004, Australia
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
7
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
8
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
9
|
Buruiană A, Gheban BA, Gheban-Roșca IA, Georgiu C, Crișan D, Crișan M. The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression. Cancers (Basel) 2024; 16:1727. [PMID: 38730679 PMCID: PMC11083853 DOI: 10.3390/cancers16091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
The tumor microenvironment (TME), a complex assembly of cellular and extracellular matrix (ECM) components, plays a crucial role in driving tumor progression, shaping treatment responses, and influencing metastasis. This narrative review focuses on the cutaneous squamous cell carcinoma (cSCC) tumor stroma, highlighting its key constituents and their dynamic contributions. We examine how significant changes within the cSCC ECM-specifically, alterations in fibronectin, hyaluronic acid, laminins, proteoglycans, and collagens-promote cancer progression, metastasis, and drug resistance. The cellular composition of the cSCC TME is also explored, detailing the intricate interplay of cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, pericytes, adipocytes, and various immune cell populations. These diverse players modulate tumor development, angiogenesis, and immune responses. Finally, we emphasize the TME's potential as a therapeutic target. Emerging strategies discussed in this review include harnessing the immune system (adoptive cell transfer, checkpoint blockade), hindering tumor angiogenesis, disrupting CAF activity, and manipulating ECM components. These approaches underscore the vital role that deciphering TME interactions plays in advancing cSCC therapy. Further research illuminating these complex relationships will uncover new avenues for developing more effective treatments for cSCC.
Collapse
Affiliation(s)
- Alexandra Buruiană
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Bogdan-Alexandru Gheban
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Emergency Clinical County Hospital, 400347 Cluj-Napoca, Romania
| | - Ioana-Andreea Gheban-Roșca
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, 400129 Cluj-Napoca, Romania;
| | - Carmen Georgiu
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Doința Crișan
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.); (C.G.); (D.C.)
| | - Maria Crișan
- Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
11
|
Terasaki M, Tsuruoka K, Tanaka T, Maeda H, Shibata M, Miyashita K, Kanemitsu Y, Sekine S, Takahashi M, Yagishita S, Hamada A. Fucoxanthin Inhibits Development of Sigmoid Colorectal Cancer in a PDX Model With Alterations of Growth, Adhesion, and Cell Cycle Signals. Cancer Genomics Proteomics 2023; 20:686-705. [PMID: 38035706 PMCID: PMC10687734 DOI: 10.21873/cgp.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates. MATERIALS AND METHODS Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis. RESULTS The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr397), pPaxillin(Tyr31), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx). CONCLUSION Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kirara Tsuruoka
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Masaki Shibata
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | | | - Yukihide Kanemitsu
- Colorectal Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, Tokyo, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
12
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
13
|
Gao H, Qian R, Ren Q, Zhang L, Qin W, Zhou C, Wang H, Liu C, Zhang Y. The upregulation of keratocan promotes the progression of human pancreatic cancer. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Liu M, Wang W, Piao S, Shen Y, Li Z, Ding W, Li J, Saiyin W. Relationship of biglycan and decorin expression with clinicopathological features and prognosis in patients with oral squamous cell carcinoma. J Oral Pathol Med 2023; 52:20-28. [PMID: 36308714 DOI: 10.1111/jop.13381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVE This study focused on investigating relation between biglycan (BGN) and decorin (DCN) expression and prognostic outcome for oral squamous cell carcinoma (OSCC) cases. MATERIAL AND METHODS BGN and DCN mRNA and protein expression was detected by qRT-PCR and Western-blotting (WB) assays from 31 OSCC samples as well as healthy samples. This work harvested 101 paraffin-embedded OSCC together with 30 healthy samples, and conducted immunohistochemical (IHC) staining for assessing pathological changes. Association of DCN with BGN within OSCC was explored by Spearman's analysis. Survival rate was explored by Kaplan-Meier (KM) approach. Multivariate analysis was conducted by Cox regression. RESULTS WB and qRT-PCR results showed BGN up-regulation (p < 0.001, p < 0.0001) whereas DCN down-regulation (p < 0.0001, p < 0.0001) with fresh OSCC tissues; the expression of BGN and DCN associated with the OSCC histopathological grade. IHC results suggested elevated BGN level (p < 0.0001) whereas DCN down-regulation (p < 0.0001) with paraffin embedded OSCC tissues. The expression of BGN and DCN associated with histopathologic grades and tumor stage of OSCC. The result of Spearman's analysis demonstrated significant association between the expression of BGN and DCN in OSCC. Survival analysis revealed that patients with higher BGN/lower DCN level showed poor overall survival (OS) as well as tumor-specific survival (TSS). Multivariate analysis proved that BGN and DCN independently predicted the prognosis of OS and TSS. CONCLUSION BGN and DCN expression levels can be adopted for predicting OSCC prognostic outcome.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wei Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Yuchen Shen
- Vascular Anomaly Center, Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhengmiao Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wentong Ding
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jichen Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Wuliji Saiyin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
15
|
Gonzalez-Molina J, Moyano-Galceran L, Single A, Gultekin O, Alsalhi S, Lehti K. Chemotherapy as a regulator of extracellular matrix-cell communication: Implications in therapy resistance. Semin Cancer Biol 2022; 86:224-236. [PMID: 35331851 DOI: 10.1016/j.semcancer.2022.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
The development of most solid cancers, including pancreatic, breast, lung, liver, and ovarian cancer, involves a desmoplastic reaction: a process of major remodeling of the extracellular matrix (ECM) affecting the ECM composition, mechanics, and microarchitecture. These properties of the ECM influence key cancer cell functions, including treatment resistance. Furthermore, emerging data show that various chemotherapeutic treatments lead to alterations in ECM features and ECM-cell communication. Here, we summarize the current knowledge around the effects of chemotherapy on both the ECM remodeling and ECM-cell signaling and discuss the implications of these alterations on distinct mechanisms of chemoresistance. Additionally, we provide an overview of current therapeutic strategies and ongoing clinical trials utilizing anti-cancer drugs to target the ECM-cell communication and explore the future challenges of these strategies.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andrew Single
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Okan Gultekin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shno Alsalhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
16
|
Hu L, Wu X, Chen D, Cao Z, Li Z, Liu Y, Zhao Q. The hypoxia-related signature predicts prognosis, pyroptosis and drug sensitivity of osteosarcoma. Front Cell Dev Biol 2022; 10:814722. [PMID: 36204682 PMCID: PMC9532009 DOI: 10.3389/fcell.2022.814722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common types of solid sarcoma with a poor prognosis. Solid tumors are often exposed to hypoxic conditions, while hypoxia is regarded as a driving force in tumor recurrence, metastasis, progression, low chemosensitivity and poor prognosis. Pytoptosis is a gasdermin-mediated inflammatory cell death that plays an essential role in host defense against tumorigenesis. However, few studies have reported relationships among hypoxia, pyroptosis, tumor immune microenvironment, chemosensitivity, and prognosis in OS. In this study, gene and clinical data from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases were merged to develop a hypoxia risk model comprising four genes (PDK1, LOX, DCN, and HMOX1). The high hypoxia risk group had a poor prognosis and immunosuppressive status. Meanwhile, the infiltration of CD8+ T cells, activated memory CD4+ T cells, and related chemokines and genes were associated with clinical survival outcomes or chemosensitivity, the possible crucial driving forces of the OS hypoxia immune microenvironment that affect the development of pyroptosis. We established a pyroptosis risk model based on 14 pyroptosis-related genes to independently predict not only the prognosis but also the chemotherapy sensitivities. By exploring the various connections between the hypoxic immune microenvironment and pyroptosis, this study indicates that hypoxia could influence tumor immune microenvironment (TIM) remodeling and promote pyroptosis leading to poor prognosis and low chemosensitivity.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Dongjie Chen
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenyu Cao
- Department of Orthopedics, The Qinghai Provincial People's Hospital, Xining, China
| | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People's Hospital, Xining, China
| | - Yanmin Liu
- Department of Cardiovascular Medicine, The Qinghai Provincial People's Hospital, Xining, China
| | - Qiangqiang Zhao
- Department of Hematology, The Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
17
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Identification and validation of a cigarette smoke-related five-gene signature as a prognostic biomarker in kidney renal clear cell carcinoma. Sci Rep 2022; 12:2189. [PMID: 35140327 PMCID: PMC8828851 DOI: 10.1038/s41598-022-06352-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Cigarette smoking greatly promotes the progression of kidney renal clear cell carcinoma (KIRC), however, the underlying molecular events has not been fully established. In this study, RCC cells were exposed to the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine) for 120 days (40 passages), and then the soft agar colony formation, wound healing and transwell assays were used to explore characteristics of RCC cells. RNA-seq was used to explore differentially expressed genes. We found that NNK promoted RCC cell growth and migration in a dose-dependent manner, and RNA-seq explored 14 differentially expressed genes. In TCGA-KIRC cohort, Lasso regression and multivariate COX regression models screened and constructed a five-gene signature containing ANKRD1, CYB5A, ECHDC3, MT1E, and AKT1S1. This novel gene signature significantly associated with TNM stage, invasion depth, metastasis, and tumor grade. Moreover, when compared with individual genes, the gene signature contained a higher hazard ratio and therefore had a more powerful value for the prognosis of KIRC. A nomogram was also developed based on clinical features and the gene signature, which showed good application. Finally, AKT1S1, the most crucial component of the gene signature, was significantly induced after NNK exposure and its related AKT/mTOR signaling pathway was dramatically activated. Our findings supported that NNK exposure would promote the KIRC progression, and the novel cigarette smoke-related five-gene signature might serve as a highly efficient biomarker to identify progression of KIRC patients, AKT1S1 might play an important role in cigarette smoke exposure-induced KIRC progression.
Collapse
|
19
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
21
|
Deng L, Wang D, Chen S, Hu W, Zhang R. Epiphycan Predicts Poor Outcomes and Promotes Metastasis in Ovarian Cancer. Front Oncol 2021; 11:653782. [PMID: 34888227 PMCID: PMC8650094 DOI: 10.3389/fonc.2021.653782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family is widely expressed in extracellular matrix and aggravates tumor progression. However, epiphycan (EPYC), as a member of the SLRPs family, its biological function in cancer has not been confirmed. Thus, we aimed to clarify the role of EPYC in progression of ovarian cancer (OC), and further analyze the molecular mechanisms implicated in tumorigenesis. Here, we analyzed the differential expression genes of GSE38734, including 4 matched primary OC and metastatic tissues. We obtained OC RNAseqs data from the Cancer Genome Atlas (TCGA) and analyzed the correlation between EPYC expression and OC staging, pathological grading, etc. The expression of EPYC in OC and normal ovarian tissues was compared in Oncomine website. We used siRNAs to interfere the expression of EPYC in ovarian cancer cell line SKOV3. Scratch test, transwell-matrigel chamber, CCK8 assay were used to detect the changes of SKOV3 migration, invasion and proliferation ability after EPYC was interfered. We used R software to make GO and KEGG analysis of related genes of EPYC. We used the Hitpredict website to predict interacting proteins. The results showed that the expression of EPYC in metastatic ovarian cancer was higher than primary ovarian cancer, and that in primary cancer was higher than normal ovaries. After siRNA interferes with EPYC expression, the migration, invasion and proliferation of SKOV3 cells were weakened. EPYC mainly played a role in ECM organization, and involved in PI3K/Akt, focal adhesion signaling pathways. EPYC might interact with PLCG2 and CRK, and be involved in signal transduction.
Collapse
Affiliation(s)
- Lu Deng
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dandan Wang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Shouzhen Chen
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Weiguo Hu
- Department of Gynaecology, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Jia Y, Feng Q, Tang B, Luo X, Yang Q, Yang H, Li Q. Decorin Suppresses Invasion and EMT Phenotype of Glioma by Inducing Autophagy via c-Met/Akt/mTOR Axis. Front Oncol 2021; 11:659353. [PMID: 34386415 PMCID: PMC8353327 DOI: 10.3389/fonc.2021.659353] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Decorin exhibits inhibitory effects in tumorigenesis in various types of cancers. The clinical characteristics of 42 patients with GBM were reviewed and analyzed. Lentiviral constructs for decorin overexpression and shRNA-mediated silencing were established for U87MG cells and T98G cells, respectively. The expressions of EMT- and autophagy-associated markers were detected in GBM cell lines. The migration and invasion of the glioma cells were assayed to reflect the malignant behavior of GBM. A mouse xenograft model was used to verify the effect of decorin on autophagy in vivo. Reduced expression of decorin in glioma tissues was associated with a poor survival of the patients. Decorin overexpression suppressed cell migration, invasion and attenuated EMT phenotype in glioma cell lines. Further study indicated that decorin inhibited EMT phenotype through the induction of autophagy. The mechanisms include inhibiting the activation of c-Met/Akt/mTOR signaling and regulating the expressions of mesenchymal markers including Slug, vimentin and Twist, and epithelial marker E-cadherin. In addition, decorin overexpression in a mice model can also suppress the GBM invasion and EMT phenotype. In conclusion, decorin suppresses invasion and EMT phenotype of glioma by inducing autophagy via c-Met/Akt/mTOR axis.
Collapse
Affiliation(s)
- Yanfei Jia
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Qian Feng
- Department of Respiratory Medicine, Second Hospital of Lanzhou University, Lanzhou, China
| | - Bo Tang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Luo
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Yang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Hu Yang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Li
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Zhu Y, Cheung ALM. Proteoglycans and their functions in esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:507-521. [PMID: 34367925 PMCID: PMC8317653 DOI: 10.5306/wjco.v12.i7.507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that has a poor prognosis. Its high lethality is mainly due to the lack of symptoms at early stages, which culminates in diagnosis at a late stage when the tumor has already metastasized. Unfortunately, the common cancer biomarkers have low sensitivity and specificity in esophageal cancer. Therefore, a better understanding of the molecular mechanisms underlying ESCC progression is needed to identify novel diagnostic markers and therapeutic targets for intervention. The invasion of cancer cells into the surrounding tissue is a crucial step for metastasis. During metastasis, tumor cells can interact with extracellular components and secrete proteolytic enzymes to remodel the surrounding tumor microenvironment. Proteoglycans are one of the major components of extracellular matrix. They are involved in multiple processes of cancer cell invasion and metastasis by interacting with soluble bioactive molecules, surrounding matrix, cell surface receptors, and enzymes. Apart from having diverse functions in tumor cells and their surrounding microenvironment, proteoglycans also have diagnostic and prognostic significance in cancer patients. However, the functional significance and underlying mechanisms of proteoglycans in ESCC are not well understood. This review summarizes the proteoglycans that have been studied in ESCC in order to provide a comprehensive view of the role of proteoglycans in the progression of this cancer type. A long term goal would be to exploit these molecules to provide new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
24
|
Zhang L, Liu C, Gao H, Zhou C, Qin W, Wang J, Meng L, Wang H, Ren Q, Zhang Y. Study on the expression profile and role of decorin in the progression of pancreatic cancer. Aging (Albany NY) 2021; 13:14989-14998. [PMID: 34021540 PMCID: PMC8221302 DOI: 10.18632/aging.203060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023]
Abstract
Desmoplasia in the extracellular matrix (ECM) is one of the hallmarks of pancreatic cancer (PC), a virtually incurable disease. Decorin, a classical small leucine-rich proteoglycan found in the ECM, was upregulated in PC tissue samples according to the data of TCGA. However, decorin plays a protective role in the ECM. So it is necessary to study the roles of decorin in the progression of PC. A significantly upregulated expression of decorin was observed in the PC tissue samples compared with the normal tissues. However, there was no considerable difference in the level of expression of decorin during different pathological stages, which was supported by the immunoblot analysis. Western blot showed a higher expression of decorin A in the para-carcinoma tissue than in the cancerous tissue but the expression of decorin B, C, and D was elevated in the cancerous tissue. The results of the MTT and scratch wound healing assays revealed an elevated proliferation ability and migration rate in decorin B-overexpressing cells but were inhibited in the decorin A-overexpressing cells. Overexpression of decorin A significantly elevated the expression of the apoptosis-related genes and Decorin B-overexpression elevated proliferation-related genes. All the results showed that decorin B played important roles in the promoting of PC.
Collapse
Affiliation(s)
- Litao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Chao Liu
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Huijie Gao
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Caiju Zhou
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Jian Wang
- Department of Pancreatic Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Lingxin Meng
- Department of Oncology, People's Hospital of Rizhao, Shandong, China
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yuntao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
25
|
Zeng F, Zhang Y, Han X, Zeng M, Gao Y, Weng J. Employing hypoxia characterization to predict tumour immune microenvironment, treatment sensitivity and prognosis in hepatocellular carcinoma. Comput Struct Biotechnol J 2021; 19:2775-2789. [PMID: 34093992 PMCID: PMC8134035 DOI: 10.1016/j.csbj.2021.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The hypoxic microenvironment was recognized as a major driving force of the malignant phenotype in hepatocellular carcinoma (HCC), which contributes to tumour immune microenvironment (TIM) remodeling and tumor progression. Dysregulated hypoxia-related genes (HRGs) result in treatment resistance and poor prognosis by reshaping tumor cellular activities and metabolism. Approaches to identify the relationship between hypoxia and tumor progression provided new sight for improving tumor treatment and prognosis. But, few practical tools, forecasting relationship between hypoxia, TIM, treatment sensitivity and prognosis in HCC were reported. Here, we pooled mRNA transcriptome and clinical pathology data from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), and later developed a hypoxia risk model including four HRGs (DCN, DDIT4, PRKCA and NDRG1). The high-risk group displayed poor clinical characteristics, a malignant phenotype with carcinogenesis/proliferation pathways activation (MTORC1 and E2F) and immunosuppressive TIM (decreased immune cell infiltrations and upregulated immunosuppressive cytokines). Meanwhile, activated B cells, effector memory CD8 T cells and EZH2 deregulation were associated with patient’s survival, which might be the core changes of HCC hypoxia. Finally, we validated the ability of the hypoxia risk model to predict treatment sensitivity and found high hypoxia risk patients had poor responses to HCC treatment, including surgical resection, Sorafenib, Transarterial Chemoembolization (TACE) and immunotherapy. In conclusion, based on 4 HRGs, we developed and validated a hypoxia risk model to reflect pathological features, evaluate TIM landscape, predict treatment sensitivity and compounds specific to hypoxia signatures in HCC patients.
Collapse
Affiliation(s)
- Fanhong Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Min Zeng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Fu Y, Bao Q, Liu Z, He G, Wen J, Liu Q, Xu Y, Jin Z, Zhang W. Development and Validation of a Hypoxia-Associated Prognostic Signature Related to Osteosarcoma Metastasis and Immune Infiltration. Front Cell Dev Biol 2021; 9:633607. [PMID: 33816483 PMCID: PMC8012854 DOI: 10.3389/fcell.2021.633607] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Increasing evidence has shown that hypoxia microenvironment relates to tumor initiation and progression. However, no studies focus on the application of hypoxia-associated genes in predicting osteosarcoma patients’ prognosis. This research aims to identify the hypoxia-associated genes related to osteosarcoma metastasis and construct a gene signature to predict osteosarcoma prognosis. Methods The differentially expressed messenger RNAs (DEmRNAs) related to osteosarcoma metastasis were identified from Therapeutically Applicable Research to Generate Effective Treatments (Target) database. Univariate and multivariate cox regression analyses were performed to develop the hypoxia-associated prognostic signature. The Kaplan–Meier (KM) survival analyses of patients with high and low hypoxia risk scores were conducted. The nomogram was constructed and the gene signature was validated in the external Gene Expression Omnibus (GEO) cohort. Single-sample gene set enrichment analysis (ssGSEA) was conducted to investigate the relationships between immune infiltration and gene signature. Results Two genes, including decorin (DCN) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1), were involved in the hypoxia-associated gene signature. In training and testing datasets, patients with high-risk scores showed lower survival rates and the gene signature was identified as the independent prognostic factor. Receiver operating characteristic (ROC) curves demonstrated the robustness of signature. Functional analyses of DEmRNAs among high- and low-risk groups revealed that immune-associated functions and pathways were significantly enriched. Furthermore, ssGSEA showed that five immune cells (DCs, macrophages, neutrophils, pDCs, and TIL) and three immune features (CCR, APC co inhibition, and Check-point) were down-regulated in the high-risk group. Conclusion The current study established and validated a novel hypoxia-associated gene signature in osteosarcoma. It could act as a prognostic biomarker and serve as therapeutic guidance in clinical applications.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuochao Liu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu He
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junxiang Wen
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqi Xu
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijian Jin
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Abstract
The transforming growth factor-beta (TGFβ) pathway is essential during embryo development and in maintaining normal homeostasis. During malignancy, the TGFβ pathway is co-opted by the tumor to increase fibrotic stroma, to promote epithelial to mesenchymal transition increasing metastasis and producing an immune-suppressed microenvironment which protects the tumor from recognition by the immune system. Compelling preclinical data demonstrate the therapeutic potential of blocking TGFβ function in cancer. However, the TGFβ pathway cannot be described as a driver of malignant disease. Two small molecule kinase inhibitors which block the serine-threonine kinase activity of TGFβRI on TGFβRII, a pan-TGFβ neutralizing antibody, a TGFβ trap, a TGFβ antisense agent, an antibody which stabilizes the latent complex of TGFβ and a fusion protein which neutralizes TGFβ and binds PD-L1 are in clinical development. The challenge is how to most effectively incorporate blocking TGFβ activity alone and in combination with other therapeutics to improve treatment outcome.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, RM 4-W602, MSC 9735, 9609 Medical Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Byrling J, Kristl T, Hu D, Pla I, Sanchez A, Sasor A, Andersson R, Marko-Varga G, Andersson B. Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker. J Transl Med 2020; 18:343. [PMID: 32887625 PMCID: PMC7487897 DOI: 10.1186/s12967-020-02498-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. Methods A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. Results In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09–14.3; P = 0.037). Conclusion Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Theresa Kristl
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Dingyuan Hu
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Indira Pla
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Aniel Sanchez
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
30
|
Network of clinically-relevant lncRNAs-mRNAs associated with prognosis of hepatocellular carcinoma patients. Sci Rep 2020; 10:11124. [PMID: 32636408 PMCID: PMC7341759 DOI: 10.1038/s41598-020-67742-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are often aberrantly expressed in Hepatocellular Carcinoma (HCC). We hypothesize that lncRNAs modulate HCC prognoses through differential deregulation of key lncRNAs affecting important gene network in key cancer pathways associated with pertinent clinical phenotype. Here, we present a novel approach integrating lncRNA-mRNA expression profiles with clinical characteristics to identify lncRNA signatures in clinically-relevant co-expression lncRNA-mRNA networks residing in pertinent cancer pathways. Notably one network, associated with poorer prognosis, comprises five up-regulated lncRNAs significantly correlated (|Pearson Correlation Coefficient|≥ 0.9) with 91 up-regulated genes in the cell-cycle and Rho-GTPase pathways. All 5 lncRNAs and 85/91 (93.4%) of the correlated genes were significantly associated with higher tumor-grade while 3/5 lncRNAs were also associated with no tumor capsule. Interestingly, 2/5 lncRNAs that are correlated with numerous genes in this oncogenic network were experimentally shown to up-regulate genes involved in cell-cycle and transcriptional regulation. Another network comprising 4 down-regulated lncRNAs and 8 down-regulated metallothionein-family genes are significantly associated with tumor invasion. The identification of these key lncRNAs signatures that deregulate important network of genes in key cancer pathways associated with pertinent clinical phenotype may facilitate the design of novel therapeutic strategies targeting these 'master' regulators for better patient outcome.
Collapse
|
31
|
Walimbe T, Panitch A. Proteoglycans in Biomedicine: Resurgence of an Underexploited Class of ECM Molecules. Front Pharmacol 2020; 10:1661. [PMID: 32082161 PMCID: PMC7000921 DOI: 10.3389/fphar.2019.01661] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Proteoglycans have emerged as biomacromolecules with important roles in matrix remodeling, homeostasis, and signaling in the past two decades. Due to their negatively charged glycosaminoglycan chains as well as distinct core protein structures, they interact with a variety of molecules, including matrix proteins, growth factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of glycan therapies in the 20th century, but this research was quickly overshadowed by readily available DNA and protein-based therapies. The recent development of recombinant technology and advances in our understanding of proteoglycan function have led to a resurgence of these molecules as potential therapeutics. This review focuses on the recent preclinical efforts that are bringing proteoglycan research and therapies back to the forefront. Examples of studies using proteoglycan cores and mimetics have also been included to give the readers a perspective on the wide-ranging and extensive applications of these versatile molecules. Collectively, these advances are opening new avenues for targeting diseases at a molecular level, and providing avenues for the development of new and exciting treatments in regenerative medicine.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Alyssa Panitch
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Järvinen TA, Pemmari T. Systemically Administered, Target-Specific, Multi-Functional Therapeutic Recombinant Proteins in Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E226. [PMID: 32013041 PMCID: PMC7075297 DOI: 10.3390/nano10020226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Growth factors, chemokines and cytokines guide tissue regeneration after injuries. However, their applications as recombinant proteins are almost non-existent due to the difficulty of maintaining their bioactivity in the protease-rich milieu of injured tissues in humans. Safety concerns have ruled out their systemic administration. The vascular system provides a natural platform for circumvent the limitations of the local delivery of protein-based therapeutics. Tissue selectivity in drug accumulation can be obtained as organ-specific molecular signatures exist in the blood vessels in each tissue, essentially forming a postal code system ("vascular zip codes") within the vasculature. These target-specific "vascular zip codes" can be exploited in regenerative medicine as the angiogenic blood vessels in the regenerating tissues have a unique molecular signature. The identification of vascular homing peptides capable of finding these unique "vascular zip codes" after their systemic administration provides an appealing opportunity for the target-specific delivery of therapeutics to tissue injuries. Therapeutic proteins can be "packaged" together with homing peptides by expressing them as multi-functional recombinant proteins. These multi-functional recombinant proteins provide an example how molecular engineering gives to a compound an ability to home to regenerating tissue and enhance its therapeutic potential. Regenerative medicine has been dominated by the locally applied therapeutic approaches despite these therapies are not moving to clinical medicine with success. There might be a time to change the paradigm towards systemically administered, target organ-specific therapeutic molecules in future drug discovery and development for regenerative medicine.
Collapse
Affiliation(s)
- Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, FI-33014 Tampere, Finland & Tampere University Hospital, 33520 Tampere, Finland
| | | |
Collapse
|
33
|
Nyman MC, Jokilammi AB, Boström PC, Kurki SH, Sainio AO, Grenman SE, Orte KJ, Hietanen SH, Elenius K, Järveläinen HT. Decorin Expression in Human Vulva Carcinoma: Oncosuppressive Effect of Decorin cDNA Transduction on Carcinoma Cells. J Histochem Cytochem 2019; 67:511-522. [PMID: 31009269 DOI: 10.1369/0022155419845373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The extracellular matrix proteoglycan decorin is well-known for its oncosuppressive activity. Here, decorin expression was examined in human vulva carcinoma tissue samples and in primary and commercial cell lines representing this malignant disease. Furthermore, the effect of adenovirus-mediated decorin cDNA (Ad-DCN) transduction on the viability, proliferation, and the expression and activity of the epidermal growth factor receptor (ErbB/HER) family members of the cell lines were investigated. Using in situ hybridization and immunohistochemistry for decorin, it was demonstrated that malignant cells in human vulva carcinoma tissues lack decorin expression. This result was true independently on tumor stage, grade or human papillomavirus status. RT-qPCR analyses showed that the human vulva carcinoma cell lines used in this study were also negative for decorin expression. Transduction of the cell lines with Ad-DCN caused a marked reduction in cell viability, while the proliferation of the cells was not affected. Experiments examining potential mechanisms behind the oncosuppressive effect of Ad-DCN transduction revealed that ErbB2/HER2 expression and activity in carcinoma cells were markedly downregulated. In conclusion, the results of this study showed that human vulva carcinoma cells lack decorin expression, and that Ad-DCN transduction of these cells induces oncosuppressive activity in part via downregulation of ErbB2/HER2.
Collapse
Affiliation(s)
- Marie C Nyman
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anne B Jokilammi
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pia C Boström
- Department of Pathology, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Samu H Kurki
- Auria Biobank, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Annele O Sainio
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Seija E Grenman
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Katri J Orte
- Department of Pathology, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Sakari H Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Klaus Elenius
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland.,Medicity Research Laboratory, Turku, Finland
| | - Hannu T Järveläinen
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
| |
Collapse
|
34
|
Whiteford JR, Arokiasamy S, De Rossi G. Translating the matrix. Br J Pharmacol 2019; 176:3-4. [PMID: 30525194 PMCID: PMC6284326 DOI: 10.1111/bph.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- James R Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Giulia De Rossi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| |
Collapse
|
35
|
Järvinen TAH, Ruoslahti E. Generation of a multi-functional, target organ-specific, anti-fibrotic molecule by molecular engineering of the extracellular matrix protein, decorin. Br J Pharmacol 2019; 176:16-25. [PMID: 29847688 PMCID: PMC6284330 DOI: 10.1111/bph.14374] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix (ECM) molecules play important roles in regulating processes such as cell proliferation, migration, differentiation and survival. Decorin is a proteoglycan that binds to ('decorates') collagen fibrils in the ECM. Decorin also interacts with many growth factors and their receptors, the most notable of these interactions being its inhibitory activity on TGF-β, the growth factor responsible for fibrosis formation. We have generated a recombinant, multi-functional, fusion-protein consisting of decorin as a therapeutic domain and a vascular homing and cell-penetrating peptide as a targeting vehicle. This recombinant decorin (CAR-DCN) accumulates at the sites of the targeted disease at higher levels and, as a result, has substantially enhanced biological activity over native decorin. CAR-DCN is an example of how molecular engineering can give a compound the ability to seek out sites of disease and enhance its therapeutic potential. CAR-DCN will hopefully be used to treat severe human diseases. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Tero A H Järvinen
- Faculty of Medicine and Life SciencesUniversity of TampereTampereFinland
- Department of Orthopedics and TraumatologyTampere University HospitalTampereFinland
| | - Erkki Ruoslahti
- Cancer CenterSanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|
36
|
Sainio AO, Järveläinen HT. Decorin-mediated oncosuppression - a potential future adjuvant therapy for human epithelial cancers. Br J Pharmacol 2018; 176:5-15. [PMID: 29488209 PMCID: PMC6284329 DOI: 10.1111/bph.14180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Currently, the multifaceted role of the extracellular matrix (ECM) in tumourigenesis has been realized. One ECM macromolecule exhibiting potent oncosuppressive actions in tumourigenesis is decorin, the prototype of the small leucine-rich proteoglycan gene family. The actions of decorin include its ability to function as an endogenous pan-receptor tyrosine kinase inhibitor, a regulator of both autophagy and mitophagy, as well as a modulator of the immune system. In this review, we will discuss these topics in more detail. We also provide a summary of preclinical studies exploring the value of decorin-mediated oncosuppression, as a potential future adjuvant therapy for epithelial cancers. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Annele Orvokki Sainio
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Hannu Tapio Järveläinen
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland
| |
Collapse
|