1
|
Haedo RJ, Rogers M, Fertig N. Membrane Physiology Symposium April 22nd-23rd, 2024, Napa California, USA. Bioelectricity 2024; 6:229-237. [PMID: 39372087 PMCID: PMC11447479 DOI: 10.1089/bioe.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
The Membrane Physiology Symposium was created with the goal of joining basic research with technology companies, where questions and conversations are open and welcomed in a universal language. For many years, academic physiology research areas have been naturally siloed into their own niche communities, which can surely be beneficial. Linking different technological application areas with varied research sectors is an integral formula for successful scientific breakthroughs. The meeting covers a wide variety of topics related to channelopathies, neurological and cardiac disease, drug development, and therapeutic applications, with research programs represented by core academic facilities, medical science institutions, small and large pharmaceutical enterprises, as well as novel cell-based and reagent providers. For this reason, gathering the brightest minds of all relevant fields in one integrative forum is essential for new avenues of discovery, development, and process optimization to occur.
Collapse
Affiliation(s)
| | - Marc Rogers
- Albion Drug Discovery Services Ltd, Cambridge, UK
| | | |
Collapse
|
2
|
Zhao P, Tang C, Yang Y, Xiao Z, Perez-Miller S, Zhang H, Luo G, Liu H, Li Y, Liao Q, Yang F, Dong H, Khanna R, Liu Z. A new polymodal gating model of the proton-activated chloride channel. PLoS Biol 2023; 21:e3002309. [PMID: 37713449 PMCID: PMC10529583 DOI: 10.1371/journal.pbio.3002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/27/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.
Collapse
Affiliation(s)
- Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yuqin Yang
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
| | - Heng Zhang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingyi Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Dong
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, New York, United States of America
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Wang L, Zellmer SG, Printzenhoff DM, Castle NA. PF-06526290 can both enhance and inhibit conduction through voltage-gated sodium channels. Br J Pharmacol 2018; 175:2926-2939. [PMID: 29791744 DOI: 10.1111/bph.14338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological agents that either inhibit or enhance flux of ions through voltage-gated sodium (Nav ) channels may provide opportunities for treatment of human health disorders. During studies to characterize agents that modulate Nav 1.3 function, we identified a compound that appears to exhibit both enhancement and inhibition of sodium ion conduction that appeared to be dependent on the gating state that the channel was in. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH Electrophysiology and site-directed mutation were used to investigate the effects of PF-06526290 on Nav channel function. KEY RESULTS PF-06526290 greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype-selective inhibitor. Mutation of the domain 4 voltage sensor modulates inhibition of Nav 1.3 or Nav 1.7 channels by PF-06526290 but has no effect on PF-06526290 mediated slowing of inactivation. CONCLUSIONS AND IMPLICATIONS These findings suggest that distinct interactions may underlie the two modes of Nav channel modulation by PF-06526290 and that a single compound can affect sodium channel function in several ways.
Collapse
Affiliation(s)
- Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|