1
|
Zhang Z, Zhang Y, Peng H, Yu Q, Kang X, Liu Y, Zheng Y, Cheng F, Wang X, Li F. Decoding TGR5: A comprehensive review of its impact on cerebral diseases. Pharmacol Res 2025; 213:107671. [PMID: 39988005 DOI: 10.1016/j.phrs.2025.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Currently, unraveling the enigmatic realm of drug targets for cerebral disorders poses a formidable challenge. Takeda G protein-coupled receptor 5 (TGR5), also known as G protein-coupled bile acid receptor 1, is a specific bile acid receptor. Widely distributed across various tissues, TGR5 orchestrates a myriad of biological functions encompassing inflammation, energy metabolism, fatty acid metabolism, immune responses, cellular proliferation, apoptosis, and beyond. Alongside its well-documented implications in liver diseases, obesity, type 2 diabetes, tumors, and cardiovascular diseases, a growing body of evidence accentuates the pivotal role of TGR5 in cerebral diseases. Thus, this comprehensive review aimed to scrutinize the current insights into the pathological mechanisms involving TGR5 in cerebral diseases, while contemplating its potential as a promising therapeutic target for cerebral diseases.
Collapse
Affiliation(s)
- Zehan Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yifei Zhang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Hongye Peng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Qingqian Yu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xiangdong Kang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Ying Liu
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| | - Feng Li
- Beijing University of Chinese Medicine, The northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Beijing 102488, China.
| |
Collapse
|
2
|
Boileve A, Romito O, Hof T, Levallois A, Brard L, d'Hers S, Fouchet A, Simard C, Guinamard R, Brette F, Sallé L. EPAC1 and 2 inhibit K + currents via PLC/PKC and NOS/PKG pathways in rat ventricular cardiomyocytes. Am J Physiol Cell Physiol 2024; 327:C557-C570. [PMID: 38985989 DOI: 10.1152/ajpcell.00582.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
The exchange protein directly activated by cAMP (EPAC) has been implicated in cardiac proarrhythmic signaling pathways including spontaneous diastolic Ca2+ leak from sarcoplasmic reticulum and increased action potential duration (APD) in isolated ventricular cardiomyocytes. The action potential (AP) lengthening following acute EPAC activation is mainly due to a decrease of repolarizing steady-state K+ current (IKSS) but the mechanisms involved remain unknown. This study aimed to assess the role of EPAC1 and EPAC2 in the decrease of IKSS and to investigate the underlying signaling pathways. AP and K+ currents were recorded with the whole cell configuration of the patch-clamp technique in freshly isolated rat ventricular myocytes. EPAC1 and EPAC2 were pharmacologically activated with 8-(4-chlorophenylthio)-2'-O-methyl-cAMP acetoxymethyl ester (8-CPTAM, 10 µmol/L) and inhibited with R-Ce3F4 and ESI-05, respectively. Inhibition of EPAC1 and EPAC2 significantly decreased the effect of 8-CPTAM on APD and IKSS showing that both EPAC isoforms are involved in these effects. Unexpectedly, calmodulin-dependent protein kinase II (CaMKII) inhibition by AIP or KN-93, and Ca2+ chelation by intracellular BAPTA, did not impact the response to 8-CPTAM. However, inhibition of PLC/PKC and nitric oxide synthase (NOS)/PKG pathways partially prevents the 8-CPTAM-dependent decrease of IKSS. Finally, the cumulative inhibition of PKC and PKG blocked the 8-CPTAM effect, suggesting that these two actors work along parallel pathways to regulate IKSS upon EPAC activation. On the basis of such findings, we propose that EPAC1 and EPAC2 are involved in APD lengthening by inhibiting a K+ current via both PLC/PKC and NOS/PKG pathways. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy.NEW & NOTEWORHTY Exchange protein directly activated by cAMP (EPAC) proteins modulate ventricular electrophysiology at the cellular level. Both EPAC1 and EPAC2 isoforms participate in this effect. Mechanistically, PLC/PKC and nitric oxide synthase (NO)/PKG pathways are involved in regulating K+ repolarizing current whereas the well-known downstream effector of EPAC, calmodulin-dependent protein kinase II (CaMKII), does not participate. This may have pathological implications since EPAC is upregulated in diseases such as cardiac hypertrophy. Thus, EPAC inhibition may be a new approach to prevent arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Arthur Boileve
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Olivier Romito
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Thomas Hof
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Aurélia Levallois
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Laura Brard
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Sarah d'Hers
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Alexandre Fouchet
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Christophe Simard
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Romain Guinamard
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| | - Fabien Brette
- PhyMedExp, INSERM U1046, CNRS 9412, Université de Montpellier, Montpellier, France
| | - Laurent Sallé
- UR 4650 PSIR, GIP Cyceron, Caen, France
- Normandie University, Caen, France
- UNICAEN, Caen, France
| |
Collapse
|
3
|
Kostritskaia Y, Klüssendorf M, Pan YE, Hassani Nia F, Kostova S, Stauber T. Physiological Functions of the Volume-Regulated Anion Channel VRAC/LRRC8 and the Proton-Activated Chloride Channel ASOR/TMEM206. Handb Exp Pharmacol 2024; 283:181-218. [PMID: 37468723 DOI: 10.1007/164_2023_673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Volume-regulated anion channels (VRACs) and the acid-sensitive outwardly rectifying anion channel (ASOR) mediate flux of chloride and small organic anions. Although known for a long time, they were only recently identified at the molecular level. VRACs are heteromers consisting of LRRC8 proteins A to E. Combining the essential LRRC8A with different LRRC8 paralogues changes key properties of VRAC such as conductance or substrate selectivity, which is how VRACs are involved in multiple physiological functions including regulatory volume decrease, cell proliferation and migration, cell death, purinergic signalling, fat and glucose metabolism, insulin signalling, and spermiogenesis. VRACs are also involved in pathological conditions, such as the neurotoxic release of glutamate and aspartate. Certain VRACs are also permeable to larger, organic anions, including antibiotics and anti-cancer drugs, making them an interesting therapeutic target. ASOR, also named proton-activated chloride channel (PAC), is formed by TMEM206 homotrimers on the plasma membrane and on endosomal compartments where it mediates chloride flux in response to extracytosolic acidification and plays a role in the shrinking and maturation of macropinosomes. ASOR has been shown to underlie neuronal swelling which causes cell death after stroke as well as promoting the metastasis of certain cancers, making them intriguing therapeutic targets as well.
Collapse
Affiliation(s)
- Yulia Kostritskaia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Malte Klüssendorf
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Yingzhou Edward Pan
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Simona Kostova
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Tobias Stauber
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
4
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
5
|
Chen L, König B, Liu T, Pervaiz S, Razzaque YS, Stauber T. More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels. Biol Chem 2019; 400:1481-1496. [DOI: 10.1515/hsz-2019-0189] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Abstract
The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.
Collapse
Affiliation(s)
- Lingye Chen
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Benjamin König
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tianbao Liu
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Sumaira Pervaiz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Yasmin S. Razzaque
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tobias Stauber
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| |
Collapse
|
6
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
7
|
Xiao GS, Zhang YH, Wang Y, Sun HY, Baumgarten CM, Li GR. Noradrenaline up-regulates volume-regulated chloride current by PKA-independent cAMP/exchange protein activated by cAMP pathway in human atrial myocytes. Br J Pharmacol 2018; 175:3422-3432. [PMID: 29900525 DOI: 10.1111/bph.14392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Adrenergic regulation of cell volume-regulated chloride current (ICl.vol ) is species-dependent. The present study investigates the mechanism underlying adrenergic regulation of ICl.vol in human atrial myocytes. EXPERIMENTAL APPROACH Conventional whole-cell patch voltage-clamp techniques were used to record membrane current in human atrial myocytes. ICl.vol was evoked by hyposmotic bath solution (0.6 times isosmotic, 0.6 T). KEY RESULTS ICl.vol was augmented by noradrenaline (1 μM) during cell swelling in 0.6 T but not under isosmotic (1 T) conditions. Up-regulation of ICl.vol in 0.6 T was blocked by the β-adrenoceptor antagonist propranolol (2 μM), but not by the α1 -adrenoceptor antagonist prazosin (2 μM). This β-adrenergic response involved cAMP but was independent of PKA; the protein kinase inhibitor H-89 (2 μM) or PKI (10 μM in pipette solution) failed to prevent ICl.vol up-regulation by noradrenaline. Moreover, the PI3K/PKB inhibitor LY294002 (50 μM) and the PKG inhibitor KT5823 (10 μM) did not affect noradrenaline-induced increases in ICl.vol . Interestingly, the exchange protein directly activated by cAMP (Epac) agonist 8-pCPT-2'-O-Me-cAMP (50 μM) also up-regulated ICl.vol , and the noradrenaline-induced increase of ICl.vol in 0.6 T was reversed or prevented by the Epac inhibitor ESI-09 (10 μM). CONCLUSION AND IMPLICATIONS These data show that ICl.vol evoked by cell swelling of human atrial myocytes is up-regulated by noradrenaline via a PKA-independent cAMP/Epac pathway in human atrial myocytes. cAMP/Epac-induced ICl.vol is expected to shorten action potential duration during human atrial myocytes swelling and may be involved in abnormal cardiac electrical activity during cardiac pathologies that evoke β-adrenoceptor signalling.
Collapse
Affiliation(s)
- Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Clive M Baumgarten
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|