1
|
Antmen FM, Matpan E, Dongel Dayanc E, Savas EO, Eken Y, Acar D, Ak A, Ozefe B, Sakar D, Canozer U, Sancak SN, Ozdemir O, Sezerman OU, Baykal AT, Serteser M, Suyen G. Urinary Metabolic Profiling During Epileptogenesis in Rat Model of Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Biomedicines 2025; 13:588. [PMID: 40149565 PMCID: PMC11940187 DOI: 10.3390/biomedicines13030588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Temporal lobe epilepsy (TLE) often develops following an initial brain injury, where specific triggers lead to epileptogenesis-a process transforming a healthy brain into one prone to spontaneous, recurrent seizures. Although electroencephalography (EEG) remains the primary diagnostic tool for epilepsy, it cannot predict the risk of epilepsy after brain injury. This limitation highlights the need for biomarkers, particularly those measurable in peripheral samples, to assess epilepsy risk. This study investigated urinary metabolites in a rat model of TLE to identify biomarkers that track epileptogenesis progression across the acute, latent, and chronic phases and elucidate the underlying mechanisms. Methods: Status epilepticus (SE) was induced in rats using repeated intraperitoneal injections of lithium chloride-pilocarpine hydrochloride. Urine samples were collected 48 h, 1 week, and 6 weeks after SE induction. Nuclear magnetic resonance spectrometry was used for metabolomic analysis, and statistical evaluations were performed using MetaboAnalyst 6.0. Differences between epileptic and control groups were represented using the orthogonal partial least squares discriminant analysis (OPLS-DA) model. Volcano plot analysis identified key metabolic changes, applying a fold-change threshold of 1.5 and a p-value < 0.05. Results: The acute phase exhibited elevated levels of acetic acid, dihydrothymine, thymol, and trimethylamine, whereas glycolysis and tricarboxylic acid cycle metabolites, including pyruvic and citric acids, were reduced. Both the acute and latent phases showed decreased theobromine, taurine, and allantoin levels, with elevated 1-methylhistidine in the latent phase. The chronic phase exhibited reductions in pimelic acid, tiglylglycine, D-lactose, and xanthurenic acid levels. Conclusions: These findings highlight stage-specific urinary metabolic changes in TLE, suggesting distinct metabolites as biomarkers for epileptogenesis and offering insights into the mechanisms underlying SE progression.
Collapse
Affiliation(s)
- Fatma Merve Antmen
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Biobank Unit, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Emir Matpan
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ekin Dongel Dayanc
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Medical Laboratory Techniques, Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Eylem Ozge Savas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Yunus Eken
- Department of Molecular Biology and Genetics, Inonu University, Malatya 44280, Türkiye
| | - Dilan Acar
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
| | - Alara Ak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Begum Ozefe
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Damla Sakar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ufuk Canozer
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Sehla Nurefsan Sancak
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ozkan Ozdemir
- Medical Biology, Department of Basic Medical Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Osman Ugur Sezerman
- Biostatistics and Medical Informatics, Department of Basic Medical Sciences, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ahmet Tarık Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul 34752, Türkiye
| | - Mustafa Serteser
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
- Acibadem Labmed Clinical Laboratories, Istanbul 34752, Türkiye
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
2
|
Okubo R, Okada M, Motomura E. Dysfunction of the NMDA Receptor in the Pathophysiology of Schizophrenia and/or the Pathomechanisms of Treatment-Resistant Schizophrenia. Biomolecules 2024; 14:1128. [PMID: 39334894 PMCID: PMC11430065 DOI: 10.3390/biom14091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
For several decades, the dopamine hypothesis contributed to the discovery of numerous typical and atypical antipsychotics and was the sole hypothesis for the pathophysiology of schizophrenia. However, neither typical nor atypical antipsychotics, other than clozapine, have been effective in addressing negative symptoms and cognitive impairments, which are indices for the prognostic and disability outcomes of schizophrenia. Following the development of atypical antipsychotics, the therapeutic targets for antipsychotics expanded beyond the blockade of dopamine D2 and serotonin 5-HT2A receptors to explore the partial agonism of the D2 receptor and the modulation of new targets, such as D3, 5-HT1A, 5-HT7, and metabotropic glutamate receptors. Despite these efforts, to date, psychiatry has not successfully developed antipsychotics with antipsychotic properties proven to be superior to those of clozapine. The glutamate hypothesis, another hypothesis regarding the pathophysiology/pathomechanism of schizophrenia, was proposed based on clinical findings that N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, such as phencyclidine and ketamine, induce schizophrenia-like psychotic episodes. Large-scale genome-wide association studies (GWASs) revealed that approximately 30% of the risk genes for schizophrenia (the total number was over one hundred) encode proteins associated with glutamatergic transmission. These findings supported the validation of the glutamate hypothesis, which was inspired by the clinical findings regarding NMDAR antagonists. Additionally, these clinical and genetic findings suggest that schizophrenia is possibly a syndrome with complicated pathomechanisms that are affected by multiple biological and genetic vulnerabilities. The glutamate hypothesis has been the most extensively investigated pathophysiology/pathomechanism hypothesis, other than the dopamine hypothesis. Studies have revealed the possibility that functional abnormalities of the NMDAR play important roles in the pathophysiology/pathomechanism of schizophrenia. However, no antipsychotics derived from the glutamatergic hypothesis have yet been approved for the treatment of schizophrenia or treatment-resistant schizophrenia. Considering the increasing evidence supporting the potential pro-cognitive effects of glutamatergic agents and the lack of sufficient medications to treat the cognitive impairments associated with schizophrenia, these previous setbacks cannot preclude research into potential novel glutamate modulators. Given this background, to emphasize the importance of the dysfunction of the NMDAR in the pathomechanism and/or pathophysiology of schizophrenia, this review introduces the increasing findings on the functional abnormalities in glutamatergic transmission associated with the NMDAR.
Collapse
Affiliation(s)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (R.O.); (E.M.)
| | | |
Collapse
|
3
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 PMCID: PMC10930587 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
4
|
Peng Y, Chiu ATG, Li VWY, Zhang X, Yeung WL, Chan SHS, Tun HM. The role of the gut-microbiome-brain axis in metabolic remodeling amongst children with cerebral palsy and epilepsy. Front Neurol 2023; 14:1109469. [PMID: 36923492 PMCID: PMC10009533 DOI: 10.3389/fneur.2023.1109469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Epilepsy-associated dysbiosis in gut microbiota has been previously described, but the mechanistic roles of the gut microbiome in epileptogenesis among children with cerebral palsy (CP) have yet to be illustrated. METHODS Using shotgun metagenomic sequencing coupled with untargeted metabolomics analysis, this observational study compared the gut microbiome and metabolome of eight children with non-epileptic cerebral palsy (NECP) to those of 13 children with cerebral palsy with epilepsy (CPE). Among children with CPE, 8 had drug-sensitive epilepsy (DSE) and five had drug-resistant epilepsy (DRE). Characteristics at enrollment, medication history, and 7-day dietary intake were compared between groups. RESULTS At the species level, CPE subjects had significantly lower abundances of Bacteroides fragilis and Dialister invisus but higher abundances of Phascolarctobacterium faecium and Eubacterium limosum. By contrast, DRE subjects had a significantly higher colonization of Veillonella parvula. Regarding microbial functional pathways, CPE subjects had decreased abundances of pathways for serine degradation, quinolinic acid degradation, glutamate degradation I, glycerol degradation, sulfate reduction, and nitrate reduction but increased abundances of pathways related to ethanol production. As for metabolites, CPE subjects had higher concentrations of kynurenic acid, 2-oxindole, dopamine, 2-hydroxyphenyalanine, 3,4-dihydroxyphenylglycol, L-tartaric acid, and D-saccharic acid; DRE subjects had increased concentrations of indole and homovanilic acid. CONCLUSIONS In this study, we found evidence of gut dysbiosis amongst children with cerebral palsy and epilepsy in terms of gut microbiota species, functional pathways, and metabolites. The combined metagenomic and metabolomic analyses have shed insights on the potential roles of B. fragilis and D. invisus in neuroprotection. The combined analyses have also provided evidence for the involvement of GMBA in the epilepsy-related dysbiosis of kynurenine, serotonin, and dopamine pathways and their complex interplay with neuroimmune and neuroendocrinological pathways.
Collapse
Affiliation(s)
- Ye Peng
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Annie T. G. Chiu
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
| | - Vivien W. Y. Li
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Duchess of Kent Children's Hospital, Pokfulam, Hong Kong SAR, China
| | - Xi Zhang
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wai L. Yeung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
| | - Sophelia H. S. Chan
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon City, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital and Duchess of Kent Children's Hospital, Pokfulam, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hein M. Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
5
|
Fukuyama K, Motomura E, Okada M. Brexpiprazole Reduces 5-HT7 Receptor Function on Astroglial Transmission Systems. Int J Mol Sci 2022; 23:ijms23126571. [PMID: 35743014 PMCID: PMC9223571 DOI: 10.3390/ijms23126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Several atypical antipsychotics exert mood-stabilising effects via the modulation of various monoamine receptors and intracellular signallings. Recent pharmacodynamic studies suggested that tripartite synaptic transmission can contribute to the pathophysiology of schizophrenia and mood disorders, their associated cognitive impairment, and several adverse reactions to atypical antipsychotics. Therefore, to explore the mechanisms underlying the antidepressive mood-stabilising and antipsychotic effects of brexpiprazole (Brex), we determined the effects of subchronic administration of therapeutically relevant concentrations/doses of Brex on the protein expression of 5-HT receptors, connexin43, cAMP levels, and intracellular signalling in cultured astrocytes and rat hypothalamus using ultra-high-pressure liquid chromatography with mass spectrometry and capillary immunoblotting systems. Subchronic administration of a therapeutically relevant concentration of Brex (300 nM) downregulated both 5-HT1A (5-HT1AR) and 5-HT7 (5-HT7R) receptors, in addition to phosphorylated Erk (pErk), without affecting phosphorylated Akt in the astroglial plasma membrane. Subchronic administration of 300 nM Brex decreased and increased phosphorylated AMPK and connexin43, respectively, in the astroglial cytosol fraction. A therapeutically relevant concentration of Brex acutely decreased the astroglial cAMP level, whereas, under the inhibition of 5-HT1AR, Brex did not affect astroglial cAMP levels. However, the 5-HT7R-agonist-induced increased astroglial cAMP level was inhibited by Brex. In contrast to the in vitro study, systemic subchronic administration of effective doses of Brex (3 and 10 mg/kg/day for 14 days) increased the cAMP level but did not affect phosphorylated AMPK in the rat hypothalamus. These results suggest several complicated pharmacological features of Brex. Partial 5-HT1AR agonistic action predominates in the low range of therapeutically relevant concentrations of Brex, whereas in the high range, 5-HT7R inverse agonist-like action is overlapped on the 5-HT1A agonistic action. These unique suppressive effects of Brex on 5-HT7R play important roles in the clinical features of Brex regarding its antidepressive mood-stabilising actions.
Collapse
|
6
|
Fukuyama K, Okada M. Brivaracetam and Levetiracetam Suppress Astroglial L-Glutamate Release through Hemichannel via Inhibition of Synaptic Vesicle Protein. Int J Mol Sci 2022; 23:ijms23094473. [PMID: 35562864 PMCID: PMC9101419 DOI: 10.3390/ijms23094473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
To explore the pathophysiological mechanisms of antiseizure and adverse behavioural/psychiatric effects of brivaracetam and levetiracetam, in the present study, we determined the effects of brivaracetam and levetiracetam on astroglial L-glutamate release induced by artificial high-frequency oscillation (HFO) bursts using ultra-high-performance liquid chromatography. Additionally, the effects of brivaracetam and levetiracetam on protein expressions of connexin43 (Cx43) and synaptic vesicle protein 2A (SV2A) in the plasma membrane of primary cultured rat astrocytes were determined using a capillary immunoblotting system. Acutely artificial fast-ripple HFO (500 Hz) burst stimulation use-dependently increased L-glutamate release through Cx43-containing hemichannels without affecting the expression of Cx43 or SV2A in the plasma membrane, whereas acute physiological ripple HFO (200 Hz) stimulation did not affect astroglial L-glutamate release or expression of Cx43 or SV2A. Contrarily, subchronic ripple HFO and acute pathological fast-ripple HFO (500 Hz) stimulations use-dependently increased L-glutamate release through Cx43-containing hemichannels and Cx43 expression in the plasma membrane. Subchronic fast-ripple HFO-evoked stimulation produced ectopic expression of SV2A in the plasma membrane, but subchronic ripple HFO stimulation did not generate ectopic SV2A. Subchronic administration of brivaracetam and levetiracetam concentration-dependently suppressed fast-ripple HFO-induced astroglial L-glutamate release and expression of Cx43 and SV2A in the plasma membrane. In contrast, subchronic ripple HFO-evoked stimulation induced astroglial L-glutamate release, and Cx43 expression in the plasma membrane was inhibited by subchronic levetiracetam administration, but was not affected by brivaracetam. These results suggest that brivaracetam and levetiracetam inhibit epileptogenic fast-ripple HFO-induced activated astroglial transmission associated with hemichannels. In contrast, the inhibitory effect of therapeutic-relevant concentrations of levetiracetam on physiological ripple HFO-induced astroglial responses probably contributes to the adverse behavioural/psychiatric effects of levetiracetam.
Collapse
|
7
|
Ismail FS, Corvace F, Faustmann PM, Faustmann TJ. Pharmacological Investigations in Glia Culture Model of Inflammation. Front Cell Neurosci 2022; 15:805755. [PMID: 34975415 PMCID: PMC8716582 DOI: 10.3389/fncel.2021.805755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes and microglia are the main cell population besides neurons in the central nervous system (CNS). Astrocytes support the neuronal network via maintenance of transmitter and ion homeostasis. They are part of the tripartite synapse, composed of pre- and postsynaptic neurons and perisynaptic astrocytic processes as a functional unit. There is an increasing evidence that astroglia are involved in the pathophysiology of CNS disorders such as epilepsy, autoimmune CNS diseases or neuropsychiatric disorders, especially with regard to glia-mediated inflammation. In addition to astrocytes, investigations on microglial cells, the main immune cells of the CNS, offer a whole network approach leading to better understanding of non-neuronal cells and their pathological role in CNS diseases and treatment. An in vitro astrocyte-microglia co-culture model of inflammation was developed by Faustmann et al. (2003), which allows to study the endogenous inflammatory reaction and the cytokine expression under drugs in a differentiated manner. Commonly used antiepileptic drugs (e.g., levetiracetam, valproic acid, carbamazepine, phenytoin, and gabapentin), immunomodulatory drugs (e.g., dexamethasone and interferon-beta), hormones and psychotropic drugs (e.g., venlafaxine) were already investigated, contributing to better understanding mechanisms of actions of CNS drugs and their pro- or anti-inflammatory properties concerning glial cells. Furthermore, the effects of drugs on glial cell viability, proliferation and astrocytic network were demonstrated. The in vitro astrocyte-microglia co-culture model of inflammation proved to be suitable as unique in vitro model for pharmacological investigations on astrocytes and microglia with future potential (e.g., cancer drugs, antidementia drugs, and toxicologic studies).
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Pedro M Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Bochum, Germany
| | - Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Distinct Effects of Escitalopram and Vortioxetine on Astroglial L-Glutamate Release Associated with Connexin43. Int J Mol Sci 2021; 22:ijms221810013. [PMID: 34576176 PMCID: PMC8468507 DOI: 10.3390/ijms221810013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
It has been established that enhancement of serotonergic transmission contributes to improvement of major depression; however, several post-mortem studies and experimental depression rodent models suggest that functional abnormalities of astrocytes play important roles in the pathomechanisms/pathophysiology of mood disorders. Direct effects of serotonin (5-HT) transporter inhibiting antidepressants on astroglial transmission systems has never been assessed in this context. Therefore, to explore the effects of antidepressants on transmission associated with astrocytes, the present study determined the effects of the selective 5-HT transporter inhibitor, escitalopram, and the 5-HT partial agonist reuptake inhibitor, vortioxetine, on astroglial L-glutamate release through activated hemichannels, and the expression of connexin43 (Cx43), type 1A (5-HT1AR) and type 7 (5-HT7R) 5-HT receptor subtypes, and extracellular signal-regulated kinase (ERK) in astrocytes using primary cultured rat cortical astrocytes in a 5-HT-free environment. Both escitalopram and 5-HT1AR antagonist (WAY100635) did not affect basal astroglial L-glutamate release or L-glutamate release through activated hemichannels. Subchronic (for seven days) administrations of vortioxetine and the 5-HT7R inverse agonist (SB269970) suppressed both basal L-glutamate release and L-glutamate release through activated hemichannels, whereas 5-HT1AR agonist (BP554) inhibited L-glutamate release through activated hemichannels, but did not affect basal L-glutamate release. In particular, WAY100635 did not affect the inhibitory effects of vortioxetine on L-glutamate release. Subchronic administration of vortioxetine, BP554 and SB269970 downregulated 5-HT1AR, 5-HT7R and phosphorylated ERK in the plasma membrane fraction, but escitalopram and WAY100635 did not affect them. Subchronic administration of SB269970 decreased Cx43 expression in the plasma membrane but did not affect the cytosol; however, subchronic administration of BP554 increased Cx43 expression in the cytosol but did not affect the plasma membrane. Subchronic vortioxetine administration increased Cx43 expression in the cytosol and decreased it in the plasma membrane. WAY100635 prevented an increased Cx43 expression in the cytosol induced by vortioxetine without affecting the reduced Cx43 expression in the plasma membrane. These results suggest that 5-HT1AR downregulation probably increases Cx43 synthesis, but 5-HT7R downregulation suppresses Cx43 trafficking to the plasma membrane. These results also suggest that the subchronic administration of therapeutic-relevant concentrations of vortioxetine inhibits both astroglial L-glutamate and Cx43 expression in the plasma membrane via 5-HT7R downregulation but enhances Cx43 synthesis in the cytosol via 5-HT1AR downregulation. This combination of the downregulation of 5-HT1AR, 5-HT7R and Cx43 in the astroglial plasma membrane induced by subchronic vortioxetine administration suggest that astrocytes is possibly involved in the pathophysiology of depression.
Collapse
|
9
|
Effects of Atypical Antipsychotics, Clozapine, Quetiapine and Brexpiprazole on Astroglial Transmission Associated with Connexin43. Int J Mol Sci 2021; 22:ijms22115623. [PMID: 34070699 PMCID: PMC8198373 DOI: 10.3390/ijms22115623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, accumulating preclinical findings suggest the possibility that functional abnormalities of tripartite synaptic transmission play important roles in the pathophysiology of schizophrenia and affective disorder. Therefore, to explore the novel mechanisms of mood-stabilizing effects associated with tripartite synaptic transmission, the present study determined the effects of mood-stabilizing antipsychotics, clozapine (CLZ), quetiapine (QTP) and brexpiprazole (BPZ), on the astroglial l-glutamate release and expression of connexin43 (Cx43) in the astroglial plasma membrane using cortical primary cultured astrocytes. Neither acute (for 120 min) nor subchronic (for 7 days) administrations of CLZ, QTP and BPZ affected basal astroglial l-glutamate release, whereas both acute and subchronic administration of CLZ, QTP and BPZ concentration-dependently enhanced astroglial l-glutamate release through activated hemichannels. Subchronic administration of therapeutic-relevant concentration of valproate (VPA), a histone deacetylase inhibiting mood-stabilizing antiepileptic drug, enhanced the stimulatory effects of therapeutic-relevant concentration of CLZ, QTP and BPZ on astroglial l-glutamate release through activated hemichannel. Subchronic administration of therapeutic-relevant concentration of CLZ, QTP and BPZ did not affect Cx43 protein expression in the plasma membrane during resting stage. After subchronic administration of VPA, acute and subchronic administration of therapeutic-relevant concentrations of CLZ increased Cx43 protein expression in the plasma membrane. Both acute administrations of therapeutic-relevant concentrations of QTP and BPZ did not affect, but subchronic administrations enhanced Cx43 protein expression in the astroglial plasma membrane. Furthermore, protein kinase B (Akt) inhibitor suppressed the stimulatory effects of CLZ and QTP, but did not affect Cx43 protein expression in the astroglial plasma membrane. These results suggest that three mood-stabilizing atypical antipsychotics, CLZ, QTP and BPZ enhance tripartite synaptic glutamatergic transmission due to enhancement of astroglial Cx43 containing hemichannel activities; however, the Cx43 activating mechanisms of these three mood-stabilizing antipsychotics were not identical. The enhanced astroglial glutamatergic transmission induced by CLZ, QTP and BPZ is, at least partially, involved in the actions of these three mood-stabilizing antipsychotics.
Collapse
|
10
|
Chronic Administrations of Guanfacine on Mesocortical Catecholaminergic and Thalamocortical Glutamatergic Transmissions. Int J Mol Sci 2021; 22:ijms22084122. [PMID: 33923533 PMCID: PMC8073983 DOI: 10.3390/ijms22084122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 01/07/2023] Open
Abstract
It has been established that the selective α2A adrenoceptor agonist guanfacine reduces hyperactivity and improves cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD). The major mechanisms of guanfacine are considered to involve the activation of the postsynaptic α2A adrenoceptor of glutamatergic pyramidal neurons in the frontal cortex, but the effects of chronic guanfacine administration on catecholaminergic and glutamatergic transmissions associated with the orbitofrontal cortex (OFC) are yet to be clarified. The actions of guanfacine on catecholaminergic transmission, the effects of acutely local and systemically chronic (for 7 days) administrations of guanfacine on catecholamine release in pathways from the locus coeruleus (LC) to OFC, the ventral tegmental area (VTA) and reticular thalamic-nucleus (RTN), from VTA to OFC, from RTN to the mediodorsal thalamic-nucleus (MDTN), and from MDTN to OFC were determined using multi-probe microdialysis with ultra-high performance liquid chromatography. Additionally, the effects of chronic guanfacine administration on the expression of the α2A adrenoceptor in the plasma membrane fraction of OFC, VTA and LC were examined using a capillary immunoblotting system. The acute local administration of therapeutically relevant concentrations of guanfacine into the LC decreased norepinephrine release in the OFC, VTA and RTN without affecting dopamine release in the OFC. Systemically, chronic administration of therapeutically relevant doses of guanfacine for 14 days increased the basal release of norepinephrine in the OFC, VTA, RTN, and dopamine release in the OFC via the downregulation of the α2A adrenoceptor in the LC, OFC and VTA. Furthermore, systemically, chronic guanfacine administration did not affect intrathalamic GABAergic transmission, but it phasically enhanced thalamocortical glutamatergic transmission. The present study demonstrated the dual actions of guanfacine on catecholaminergic transmission-acute attenuation of noradrenergic transmission and chronic enhancement of noradrenergic transmission and thalamocortical glutamatergic transmission. These dual actions of guanfacine probably contribute to the clinical effects of guanfacine against ADHD.
Collapse
|
11
|
Platten M, Friedrich M, Wainwright DA, Panitz V, Opitz CA. Tryptophan metabolism in brain tumors - IDO and beyond. Curr Opin Immunol 2021; 70:57-66. [PMID: 33813026 DOI: 10.1016/j.coi.2021.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolism of the essential amino acid tryptophan is a key metabolic pathway that restricts antitumor immunity and is a drug development target for cancer immunotherapy. Tryptophan metabolism is active in brain tumors including gliomas and promotes a malignant phenotype and contributes to the immunosuppressive tumor microenvironment. In recent years, improved understanding of the regulation and downstream function of tryptophan metabolism has been significantly expanded beyond the initial in vitro observation that the enzyme indoleamine-2,3-dioxygenase 1 (IDO1) promotes the depletion of intracellular tryptophan. Here, we revisit the specific roles of tryptophan metabolites in regulating brain functioning and neuronal integrity as well as in the context of brain tumors. This review summarizes recent developments in identifying key regulators, as well as the cellular and molecular effects of tryptophan metabolism with a particular focus on potential therapeutic targets in glioma.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mirco Friedrich
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Derek A Wainwright
- Departments of Neurological Surgery, Medicine - Division of Hematology/Oncology, and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Verena Panitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
12
|
Okada M. Can rodent models elucidate the pathomechanisms of genetic epilepsy? Br J Pharmacol 2021; 179:1620-1639. [PMID: 33689168 PMCID: PMC9291625 DOI: 10.1111/bph.15443] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/03/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE; previously autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE), originally reported in 1994, was the first distinct genetic epilepsy shown to be caused by CHNRA4 mutation. In the past two decades, we have identified several functional abnormalities of mutant ion channels and their associated transmissions using several experiments involving single-cell and genetic animal (rodent) models. Currently, epileptologists understand that functional abnormalities underlying epileptogenesis/ictogenesis in humans and rodents are more complicated than previously believed and that the function of mutant molecules alone cannot contribute to the development of epileptogenesis/ictogenesis but play important roles in the development of epileptogenesis/ictogenesis through formation of abnormalities in various other transmission systems before epilepsy onset. Based on our recent findings using genetic rat ADSHE models, harbouring Chrna4 mutant, corresponding to human S284L-mutant CRHNA4, this review proposes a hypothesis associated with tripartite synaptic transmission in ADSHE pathomechanisms induced by mutant ACh receptors.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
13
|
Okada M, Fukuyama K, Shiroyama T, Ueda Y. Brivaracetam prevents astroglial l-glutamate release associated with hemichannel through modulation of synaptic vesicle protein. Biomed Pharmacother 2021; 138:111462. [PMID: 33706129 DOI: 10.1016/j.biopha.2021.111462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The antiepileptic/anticonvulsive action of brivaracetam is considered to occur via modulation of synaptic vesicle protein 2A (SV2A); however, the pharmacological mechanisms of action have not been fully characterised. To explore the antiepileptic/anticonvulsive mechanism of brivaracetam associated with SV2A modulation, this study determined concentration-dependent effects of brivaracetam on astroglial L-glutamate release associated with connexin43 (Cx43), tumour-necrosis factor-α (TNFα) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/glutamate receptor of rat primary cultured astrocytes using ultra-high-performance liquid chromatography. Furthermore, interaction among TNFα, elevated extracellular K+ and brivaracetam on expression of SV2A and Cx43 was determined using capillary immunoblotting. TNFα and elevated extracellular K+ predominantly enhanced astroglial L-glutamate release associated with respective AMPA/glutamate receptor and hemichannel. These effects were enhanced by a synergistic effect of TNFα and elevated extracellular K+ in combination. The activation of astroglial L-glutamate release, and expression of SV2A and Cx43 in the plasma membrane was suppressed by subchronic brivaracetam administration but were unaffected by acute administration. These results suggest that migration of SV2A to the astroglial plasma membrane by hyperexcitability activates astroglial glutamatergic transmission, perhaps via hemichannel activation. Subchronic brivaracetam administration suppressed TNFα-induced activation of AMPA/glutamate receptor and hemichannel via inhibition of ectopic SV2A. These findings suggest that combined inhibition of vesicular and ectopic SV2A functions contribute to the antiepileptic/anticonvulsive mechanism of brivaracetam action.
Collapse
Affiliation(s)
- Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Yuto Ueda
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
14
|
Effects of Subchronic Administrations of Vortioxetine, Lurasidone, and Escitalopram on Thalamocortical Glutamatergic Transmission Associated with Serotonin 5-HT7 Receptor. Int J Mol Sci 2021; 22:ijms22031351. [PMID: 33572981 PMCID: PMC7866391 DOI: 10.3390/ijms22031351] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
The functional suppression of serotonin (5-HT) type 7 receptor (5-HT7R) is forming a basis for scientific discussion in psychopharmacology due to its rapid-acting antidepressant-like action. A novel mood-stabilizing atypical antipsychotic agent, lurasidone, exhibits a unique receptor-binding profile, including a high affinity for 5-HT7R antagonism. A member of a novel class of antidepressants, vortioxetine, which is a serotonin partial agonist reuptake inhibitor (SPARI), also exhibits a higher affinity for serotonin transporter, serotonin receptors type 1A (5-HT1AR) and type 3 (5-HT3R), and 5-HT7R. However, the effects of chronic administration of lurasidone, vortioxetine, and the selective serotonin reuptake inhibitor (SSRI), escitalopram, on 5-HT7R function remained to be clarified. Thus, to explore the mechanisms underlying the clinical effects of vortioxetine, escitalopram, and lurasidone, the present study determined the effects of these agents on thalamocortical glutamatergic transmission, which contributes to emotional/mood perception, using multiprobe microdialysis and 5-HT7R expression using capillary immunoblotting. Acute local administration of a 5-HT7R agonist and antagonist into the mediodorsal thalamic nucleus (MDTN) enhanced and reduced thalamocortical glutamatergic transmission, induced by N-methyl-D-aspartate (NMDA)/glutamate receptor inhibition in the reticular thalamic nucleus (RTN). Acute local administration of a relevant therapeutic concentration of vortioxetine and lurasidone into the MDTN suppressed the thalamocortical glutamatergic transmission via 5-HT7R inhibition, whereas that of escitalopram activated 5-HT7R. Subchronic administration of effective doses of vortioxetine and lurasidone (for 7 days) reduced the thalamocortical glutamatergic transmission, but escitalopram did not affect it, whereas subchronic administration of these three agents attenuated the stimulatory effects of the 5-HT7R agonist on thalamocortical glutamatergic transmission. Subchronic administration of effective doses of vortioxetine, lurasidone, and escitalopram downregulated the 5-HT7R expression of the plasma membrane in the MDTN; the 5-HT7R downregulation induced by vortioxetine and lurasidone was observed at 3 days, but that induced by escitalopram required a longer duration of 7 days. These results indicate that chronic administration of vortioxetine, escitalopram, and lurasidone generate downregulation of 5-HT7R in the thalamus; however, the direct inhibition of 5-HT7R associated with vortioxetine and lurasidone generates more rapid downregulation than the indirect elevation of the extracellular serotonin level via serotonin transporter inhibition by escitalopram.
Collapse
|
15
|
Okubo R, Hasegawa T, Fukuyama K, Shiroyama T, Okada M. Current Limitations and Candidate Potential of 5-HT7 Receptor Antagonism in Psychiatric Pharmacotherapy. Front Psychiatry 2021; 12:623684. [PMID: 33679481 PMCID: PMC7930824 DOI: 10.3389/fpsyt.2021.623684] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Several mood-stabilizing atypical antipsychotics and antidepressants weakly block serotonin (5-HT) receptor type-7 (5-HT7R); however, the contributions of 5-HT7R antagonism to clinical efficacy and pathophysiology are yet to be clarified. A novel mood-stabilizing antipsychotic agent, lurasidone exhibits predominant binding affinity to 5-HT7R when compared with other monoamine receptors. To date, we have failed to discover the superior clinical efficacy of lurasidone on schizophrenia, mood, or anxiety disorders when compared with conventional mood-stabilizing atypical antipsychotics; however, numerous preclinical findings have indicated the possible potential of 5-HT7R antagonism against several neuropsychiatric disorders, as well as the generation of novel therapeutic options that could not be expected with conventional atypical antipsychotics. Traditional experimental techniques, electrophysiology, and microdialysis have demonstrated that the effects of 5-HT receptor type-1A (5-HT1AR) and 5-HT7R on neurotransmission are in contrast, but the effect of 5-HT1AR is more predominant than that of 5-HT7R, resulting in an insufficient understanding of the 5-HT7R function in the field of psychopharmacology. Accumulating knowledge regarding the pharmacodynamic profiles of 5-HT7R suggests that 5-HT7R is one of the key players in the establishment and remodeling of neural development and cytoarchitecture during the early developmental stage to the mature brain, and dysfunction or modulation of 5-HT7R is linked to the pathogenesis/pathophysiology of neuropsychiatric and neurodevelopmental disorders. In this review, to explore candidate novel applications for the treatment of several neuropsychiatric disorders, including mood disorders, schizophrenia, and other cognitive disturbance disorders, we discuss perspectives of psychopharmacology regarding the effects of 5-HT7R antagonism on transmission and intracellular signaling systems, based on preclinical findings.
Collapse
Affiliation(s)
- Ruri Okubo
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Toshiki Hasegawa
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takashi Shiroyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Motohiro Okada
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
16
|
Astroglial Connexin43 as a Potential Target for a Mood Stabiliser. Int J Mol Sci 2020; 22:ijms22010339. [PMID: 33396966 PMCID: PMC7795839 DOI: 10.3390/ijms22010339] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mood disorders remain a major public health concern worldwide. Monoaminergic hypotheses of pathophysiology of bipolar and major depressive disorders have led to the development of monoamine transporter-inhibiting antidepressants for the treatment of major depression and have contributed to the expanded indications of atypical antipsychotics for the treatment of bipolar disorders. In spite of psychopharmacological progress, current pharmacotherapy according to the monoaminergic hypothesis alone is insufficient to improve or prevent mood disorders. Recent approval of esketamine for treatment of treatment-resistant depression has attracted attention in psychopharmacology as a glutamatergic hypothesis of the pathophysiology of mood disorders. On the other hand, in the last decade, accumulated findings regarding the pathomechanisms of mood disorders emphasised that functional abnormalities of tripartite synaptic transmission play important roles in the pathophysiology of mood disorders. At first glance, the enhancement of astroglial connexin seems to contribute to antidepressant and mood-stabilising effects, but in reality, antidepressive and mood-stabilising actions are mediated by more complicated interactions associated with the astroglial gap junction and hemichannel. Indeed, several depressive mood-inducing stress stimulations suppress connexin43 expression and astroglial gap junction function, but enhance astroglial hemichannel activity. On the other hand, monoamine transporter-inhibiting antidepressants suppress astroglial hemichannel activity and enhance astroglial gap junction function, whereas several non-antidepressant mood stabilisers activate astroglial hemichannel activity. Based on preclinical findings, in this review, we summarise the effects of antidepressants, mood-stabilising antipsychotics, and anticonvulsants on astroglial connexin, and then, to establish a novel strategy for treatment of mood disorders, we reveal the current progress in psychopharmacology, changing the question from "what has been revealed?" to "what should be clarified?".
Collapse
|
17
|
Age-Dependent and Sleep/Seizure-Induced Pathomechanisms of Autosomal Dominant Sleep-Related Hypermotor Epilepsy. Int J Mol Sci 2020; 21:ijms21218142. [PMID: 33143372 PMCID: PMC7662760 DOI: 10.3390/ijms21218142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
The loss-of-function S284L-mutant α4 subunit of the nicotinic acetylcholine receptor (nAChR) is considered to contribute to the pathomechanism of autosomal dominant sleep-related hypermotor epilepsy (ADSHE); however, the age-dependent and sleep-related pathomechanisms of ADSHE remain to be clarified. To explore the age-dependent and sleep-induced pathomechanism of ADSHE, the present study determined the glutamatergic transmission abnormalities associated with α4β2-nAChR and the astroglial hemichannel in the hyperdirect and corticostriatal pathways of ADSHE model transgenic rats (S286L-TG) bearing the rat S286L-mutant Chrna4 gene corresponding to the human S284L-mutant CHRNA4 gene of ADSHE, using multiprobe microdialysis and capillary immunoblotting analyses. This study could not detect glutamatergic transmission in the corticostriatal pathway from the orbitofrontal cortex (OFC) to the striatum. Before ADSHE onset (four weeks of age), functional abnormalities of glutamatergic transmission compared to the wild-type in the cortical hyperdirect pathway, from OFC to the subthalamic nucleus (STN) in S286L-TG, could not be detected. Conversely, after ADSHE onset (eight weeks of age), glutamatergic transmission in the hyperdirect pathway of S286L-TG was enhanced compared to the wild-type. Notably, enhanced glutamatergic transmission of S286L-TG was revealed by hemichannel activation in the OFC. Expression of connexin43 (Cx43) in the OFC of S286L-TG was upregulated after ADSHE onset but was almost equal to the wild-type prior to ADSHE onset. Differences in the expression of phosphorylated protein kinase B (pAkt) before ADSHE onset between the wild-type and S286L-TG were not observed; however, after ADSHE onset, pAkt was upregulated in S286L-TG. Conversely, the expression of phosphorylated extracellular signal-regulated kinase (pErk) was already upregulated before ADSHE onset compared to the wild-type. Both before and after ADSHE onset, subchronic nicotine administration decreased and did not affect the both expression of Cx43 and pErk of respective wild-type and S286L-TG, whereas the pAkt expression of both the wild-type and S286L-TG was increased by nicotine. Cx43 expression in the plasma membrane of the primary cultured astrocytes of the wild-type was increased by elevation of the extracellular K+ level (higher than 10 mM), and the increase in Cx43 expression in the plasma membrane required pErk functions. These observations indicate that a combination of functional abnormalities, GABAergic disinhibition, and upregulated pErk induced by the loss-of-function S286L-mutant α4β2-nAChR contribute to the age-dependent and sleep-induced pathomechanism of ADSHE via the upregulation/hyperactivation of the Cx43 hemichannels.
Collapse
|
18
|
Fukuyama K, Ueda Y, Okada M. Effects of Carbamazepine, Lacosamide and Zonisamide on Gliotransmitter Release Associated with Activated Astroglial Hemichannels. Pharmaceuticals (Basel) 2020; 13:ph13060117. [PMID: 32516974 PMCID: PMC7345221 DOI: 10.3390/ph13060117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies using the genetic partial epilepsy model have demonstrated that hyperfunction of astroglial hemichannels contributes to pathomechanism of epileptic seizure. Therefore, to explore the novel anticonvulsive mechanisms, the present study determined the effects of voltage-dependent Na+ channel (VDSC)-inhibiting anticonvulsants, carbamazepine (CBZ), lacosamide (LCM), and zonisamide (ZNS) on the astroglial release of l-glutamate and adenosine triphosphate (ATP). The effects of subchronic administration of therapeutic-relevant dose of three anticonvulsants on the release of l-glutamate and ATP in the orbitofrontal cortex (OFC) were determined using microdialysis. The concentration-dependent effects of acute and subchronic administrations of anticonvulsants on astroglial gliotransmitter release were determined using primary cultured astrocytes. The concentration-dependent effects of subchronic administrations of anticonvulsants on connexin43 (Cx43) expression in the plasma membrane of primary cultured astrocytes were determined using the Simple Western system. An increase in the levels of extracellular K+ resulted in a concentration-dependent increase in the astroglial release of l-glutamate and ATP. The depleted levels of extracellular Ca2+ alone did not affect astroglial gliotransmitter release but did accelerate K+-evoked gliotransmitter release via activation of astroglial hemichannels. Both non-selective hemichannel inhibitor carbenoxolone (CBX) and selective Cx43 inhibitor GAP19 prevented both gliotransmitter release through activated astroglial hemichannels and the hemichannel-activating process induced by elevation of the levels of extracellular K+ with depletion of the levels of extracellular Ca2+. ZNS subchronically decreased Cx43 expression and acutely/subchronically inhibited Cx43 hemichannel activity. LCM acutely inhibited hemichannel activity but did not subchronically affect Cx43 expression. Therapeutic-relevant concentration of CBZ did not affect hemichannel activity or Cx43 expression, but supratherapeutic concentration of CBZ decreased Cx43 expression and hemichannel activity. Therefore, the present study demonstrated the distinct effects of CBZ, LCM, and ZNS on gliotransmitter release via modulation of astroglial hemichannel function. The different features of the effects of three VDSC-inhibiting anticonvulsants on astroglial transmission associated with hemichannels, at least partially, possibly contributing to the formation of the properties of these three anticonvulsants, including the antiepileptic spectrum and adverse effects regarding mood and cognitive disturbance.
Collapse
|
19
|
Upregulated Connexin 43 Induced by Loss-of-Functional S284L-Mutant α4 Subunit of Nicotinic ACh Receptor Contributes to Pathomechanisms of Autosomal Dominant Sleep-Related Hypermotor Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13040058. [PMID: 32235384 PMCID: PMC7243124 DOI: 10.3390/ph13040058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
To study the pathomechanism and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities of glutamatergic transmission in the thalamocortical motor pathway, from the reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN) tosecondary motor cortex (M2C) associated with the S286L-mutant α4β2-nicotinic acetylcholine receptor (nAChR) and the connexin43 (Cx43) hemichannel of transgenic rats bearing the rat S286L-mutant Chrna4 gene (S286L-TG), which corresponds to the human S284L-mutant CHRNA4 gene using multiprobe microdialysis, primary cultured astrocytes and a Simple Western system. Expression of Cx43 in the M2C plasma membrane fraction of S286L-TG was upregulated compared with wild-type rats. Subchronic nicotine administration decreased Cx43 expression of wild-type, but did not affect that of S286L-TG; however, zonisamide (ZNS) decreased Cx43 in both wild-type and S286L-TG. Primary cultured astrocytes of wild-type were not affected by subchronic administration of nicotine but was decreased by ZNS. Upregulated Cx43 enhanced glutamatergic transmission during both resting and hyperexcitable stages in S286L-TG. Furthermore, activation of glutamatergic transmission associated with upregulated Cx43 reinforced the prolonged Cx43 hemichannel activation. Subchronic administration of therapeutic-relevant doses of ZNS compensated the upregulation of Cx43 and prolonged reinforced activation of Cx43 hemichannel induced by physiological hyperexcitability during the non-rapid eye movement phase of sleep. The present results support the primary pathomechanisms and secondary pathophysiology of ADSHE seizures of patients with S284L-mutation.
Collapse
|
20
|
Activation of Astroglial Connexin is Involved in Concentration-Dependent Double-Edged Sword Clinical Action of Clozapine. Cells 2020; 9:cells9020414. [PMID: 32054069 PMCID: PMC7072131 DOI: 10.3390/cells9020414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
Clozapine (CLZ) is a gold-standard antipsychotic against treatment-refractory schizophrenia, but is one of the most toxic antipsychotic agents. Pharmacological mechanisms of the double-edged sword clinical action of CLZ remain to be clarified. To explore the mechanisms of CLZ, the present study determined the astroglial transmission associated with connexin43 (Cx43), which is the most principal expression in astrocytes and myocardial cells, and expression of Cx43 in primary cultured astrocytes. Both acute and subchronic administrations of CLZ concentration-dependently increased Cx43-associated astroglial release of l-glutamate and d-serine, whereas therapeutic-relevant concentration of CLZ acutely did not affect but subchronically increased astroglial release. In contrast, after the subchronic administration of therapeutic-relevant concentration of valproate (VPA), acute administration of therapeutic-relevant concentration of CLZ drastically increased Cx43-associated astroglial releases. VPA increased Cx43 expression in cytosol fraction without affecting plasma membrane fraction, whereas CLZ increased Cx43 expression in both fractions. Acute administration of therapeutic-relevant concentration of CLZ drastically increased Cx43 expression in the plasma membrane fraction of astrocytes subchronically treated with VPA. The present findings suggest that CLZ-induced the activation of Cx43-associated channel activity and transported Cx43 to plasma membrane, probably contribute to the double-edged sword clinical action of CLZ, such as improvement of cognitive dysfunction and CLZ-induced myocarditis.
Collapse
|
21
|
Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A 2A Receptor. Int J Mol Sci 2019; 20:ijms20153727. [PMID: 31366130 PMCID: PMC6695599 DOI: 10.3390/ijms20153727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022] Open
Abstract
Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines.
Collapse
|
22
|
Fukuyama K, Kato R, Murata M, Shiroyama T, Okada M. Clozapine Normalizes a Glutamatergic Transmission Abnormality Induced by an Impaired NMDA Receptor in the Thalamocortical Pathway via the Activation of a Group III Metabotropic Glutamate Receptor. Biomolecules 2019; 9:biom9060234. [PMID: 31213006 PMCID: PMC6628267 DOI: 10.3390/biom9060234] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pharmacological mechanisms of gold-standard antipsychotics against treatment-refractory schizophrenia, such as clozapine (CLZ), remain unclear. We aimed to explore the mechanisms of CLZ by investigating the effects of MK801 and CLZ on tripartite synaptic transmission in the thalamocortical glutamatergic pathway using multi-probe microdialysis and primary cultured astrocytes. l-glutamate release in the medial prefrontal cortex (mPFC) was unaffected by local MK801 administration into mPFC but was enhanced in the mediodorsal thalamic nucleus (MDTN) and reticular thalamic nucleus (RTN) via GABAergic disinhibition in the RTN–MDTN pathway. The local administration of therapeutically relevant concentrations of CLZ into mPFC and MDTN increased and did not affect mPFC l-glutamate release. The local administration of the therapeutically relevant concentration of CLZ into mPFC reduced MK801-induced mPFC l-glutamate release via presynaptic group III metabotropic glutamate receptor (III-mGluR) activation. However, toxic concentrations of CLZ activated l-glutamate release associated with hemichannels. This study demonstrated that RTN is a candidate generator region in which impaired N-methyl-d-aspartate (NMDA)/glutamate receptors likely produce thalamocortical hyperglutamatergic transmission. Additionally, we identified several mechanisms of CLZ relating to its superiority in treatment-resistant schizophrenia and its severe adverse effects: (1) the prevention of thalamocortical hyperglutamatergic transmission via activation of mPFC presynaptic III-mGluR and (2) activation of astroglial l-glutamate release associated with hemichannels. These actions may contribute to the unique clinical profile of CLZ.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Ryo Kato
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Masahiko Murata
- National Hospital Organization Sakakibara Hospital, 777 Sakakibara, Tsu, Mie 514-1292, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan.
| |
Collapse
|
23
|
Amantadine Combines Astroglial System Xc - Activation with Glutamate/NMDA Receptor Inhibition. Biomolecules 2019; 9:biom9050191. [PMID: 31108896 PMCID: PMC6572554 DOI: 10.3390/biom9050191] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 01/06/2023] Open
Abstract
A glutamate/NMDA receptor (NMDA-R) antagonist, amantadine (AMA) exhibits a broad spectrum of clinically important properties, including antiviral, antiparkinsonian, neuroprotective, neuro-reparative and cognitive-enhancing effects. However, both clinical and pre-clinical studies have demonstrated that noncompetitive NMDA-R antagonists induce severe schizophrenia-like cognitive deficits. Therefore, this study aims to clarify the clinical discrepancy between AMA and noncompetitive NMDA-R antagonists by comparing the effects of AMA with those of a noncompetitive NMDA-R antagonist, MK801, on rat tripartite glutamatergic synaptic transmission using microdialysis and primary cultured astrocytes. Microdialysis study demonstrated that the stimulatory effects of AMA on L-glutamate release differed from those of MK801 in the globus pallidus, entorhinal cortex and entopeduncular nucleus. The stimulatory effect of AMA on L-glutamate release was modulated by activation of cystine/glutamate antiporter (Sxc). Primary cultured astrocytes study demonstrated that AMA also enhanced glutathione synthesis via Sxc activation. Furthermore, carbon-monoxide induced damage of the astroglial glutathione synthesis system was repaired by AMA but not MK801. Additionally, glutamate/AMPA receptor (AMPA-R) antagonist, perampanel enhanced the protective effects of AMA. The findings of microdialysis and cultured astrocyte studies suggest that a combination of Sxc activation with inhibitions of ionotropic glutamate receptors contributes to neuroprotective, neuro-reparative and cognitive-enhancing activities that can mitigate several neuropsychiatric disorders.
Collapse
|
24
|
Fukuyama K, Okada M. Effects of levetiracetam on astroglial release of kynurenine-pathway metabolites. Br J Pharmacol 2018; 175:4253-4265. [PMID: 30153331 DOI: 10.1111/bph.14491] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Several preclinical studies have demonstrated the unique profiles of levetiracetam (LEV), inhibits spontaneous absence epilepsy models but does not affect traditional convulsion models; however, the detailed pharmacological mechanisms of action of LEV remain to be clarified. EXPERIMENTAL APPROACH We determined the interaction between LEV and IFNγ regarding astroglial release of anti-convulsive (kynurenic acid and xanthurenic acid), pro-convulsive (quinolinic acid) and anti-convulsive but pro-absence (cinnabarinic acid) kynurenine-pathway metabolites from rat cortical primary cultured astrocytes using ultra-HPLC equipped with MS. KEY RESULTS IFNγ increased basal astroglial release of cinnabarinic acid and quinolinic acid but decreased that of kynurenic acid and xanthurenic acid. IFNγ enhanced inositol 1,4,5-trisphosphate (IP3 ) receptor agonist (adenophostin A, AdA)-induced astroglial release of kynurenine-pathway metabolites, without affecting AMPA-induced release. LEV increased basal astroglial release of kynurenic acid and xanthurenic acid without affecting cinnabarinic acid or quinolinic acid. Chronic and acute LEV administration inhibited AMPA- and AdA-induced kynurenine-pathway metabolite release. Upon chronic administration, LEV enhanced stimulatory effects of IFNγ on kynurenic acid and xanthurenic acid, and reduced its stimulatory effects on cinnabarinic acid and quinolinic acid. Furthermore, LEV inhibited stimulatory effects of chronic IFNγ on AdA-induced release of kynurenine-pathway metabolites. CONCLUSIONS AND IMPLICATIONS This study demonstrated several mechanisms of LEV: (i) inhibition of AMPA- and AdA-induced astroglial release, (ii) inhibition of IFNγ-induced IP3 receptor activation and (iii) inhibition of release of cinnabarinic acid and quinolinic acid with activation of that of kynurenic acid induced by IFNγ. These combined actions of LEV may contribute to its unique profile.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| |
Collapse
|