1
|
Jahan J, Joshi S, Oca IMD, Toelle A, Lopez-Yang C, Chacon CV, Beyer AM, Garcia CA, Jarajapu YP. The role of telomerase reverse transcriptase in the mitochondrial protective functions of Angiotensin-(1-7) in diabetic CD34 + cells. Biochem Pharmacol 2024; 222:116109. [PMID: 38458330 PMCID: PMC11007670 DOI: 10.1016/j.bcp.2024.116109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/08/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Angiotensin (Ang)-(1-7) stimulates vasoprotective functions of diabetic (DB) CD34+ hematopoietic stem/progenitor cells partly by decreasing reactive oxygen species (ROS), increasing nitric oxide (NO) levels and decreasing TGFβ1 secretion. Telomerase reverse transcriptase (TERT) translocates to mitochondria and regulates ROS generation. Alternative splicing of TERT results in variants α-, β- and α-β-TERT, which may oppose functions of full-length (FL) TERT. This study tested if the protective functions of Ang-(1-7) or TGFβ1-silencing are mediated by mitoTERT and that diabetes decreases FL-TERT expression by inducing splicing. CD34+ cells were isolated from the peripheral blood mononuclear cells of nondiabetic (ND, n = 68) or DB (n = 74) subjects. NO and mitoROS levels were evaluated by flow cytometry. TERT splice variants and mitoDNA-lesions were characterized by qPCR. TRAP assay was used for telomerase activity. Decoy peptide was used to block mitochondrial translocation (mitoXTERT). TERT inhibitor or mitoXTERT prevented the effects of Ang-(1-7) on NO or mitoROS levels in DB-CD34+ cells. FL-TERT expression and telomerase activity were lower and mitoDNA-lesions were higher in DB cells compared to ND and were reversed by Ang-(1-7) or TGFβ1-silencing. The prevalence of TERT splice variants, with predominant β-TERT expression, was higher and the expression of FL-TERT was lower in DB cells (n = 25) compared to ND (n = 30). Ang-(1-7) or TGFβ1-silencing decreased TERT-splicing and increased FL-TERT. Blocking of β-splicing increased FL-TERT and protected mitoDNA in DB-cells. The findings suggest that diabetes induces TERT-splicing in CD34+ cells and that β-TERT splice variant largely contributes to the mitoDNA oxidative damage.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Andrew Toelle
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | | | - Andreas M Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
2
|
Jahan J, Monte de Oca I, Meissner B, Joshi S, Maghrabi A, Quiroz-Olvera J, Lopez-Yang C, Bartelmez SH, Garcia C, Jarajapu YP. Transforming growth factor-β1/Thrombospondin-1/CD47 axis mediates dysfunction in CD34 + cells derived from diabetic older adults. Eur J Pharmacol 2022; 920:174842. [PMID: 35217004 PMCID: PMC8967481 DOI: 10.1016/j.ejphar.2022.174842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
Abstract
Aging with diabetes is associated with impaired vasoprotective functions and decreased nitric oxide (NO) generation in CD34+ cells. Transforming growth factor- β1 (TGF-β1) is known to regulate hematopoietic functions. This study tested the hypothesis that transforming growth factor- β1 (TGF-β1) is upregulated in diabetic CD34+ cells and impairs NO generation via thrombospondin-1 (TSP-1)/CD47/NO pathway. CD34+ cells from nondiabetic (ND) (n=58) or diabetic older adults (DB) (both type 1 and type 2) (n=62) were isolated from peripheral blood. TGF-β1 was silenced by using an antisense delivered as phosphorodiamidate morpholino oligomer (PMO-TGF-β1). Migration and proliferation in response to stromal-derived factor-1α (SDF-1α) were evaluated. NO generation and eNOS phosphorylation were determined by flow cytometry. CD34+ cells from older, but not younger, diabetics have higher expression of TGF-β1 compared to that observed in cells derived from healthy individuals (P<0.05, n=14). TSP-1 expression was higher (n=11) in DB compared to ND cells. TGFβ1-PMO decreased the secretion of TGF-β1, which was accompanied with decreased TSP-1 expression. Impaired proliferation, migration and NO generation in response to SDF-1α in DB cells were reversed by TGF-β1-PMO (n=6). TSP-1 inhibited migration and proliferation of nondiabetic CD34+ cells that was reversed by CD47-siRNA, which also restored these responses in diabetic CD34+ cells. TSP-1 opposed SDF-1α-induced eNOS phosphorylation at Ser1177 that was reversed by CD47-siRNA. These results infer that increased TGF-β1 expression in CD34+ cells induces dysfunction in CD34+ cells from diabetic older adults via TSP-1/CD47-dependent inhibition of NO generation.
Collapse
Affiliation(s)
- Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Brian Meissner
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
3
|
Chen XY, Wang JQ, Cheng SJ, Wang Y, Deng MY, Yu T, Wang HY, Zhou WJ. Diazoxide Post-conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Front Cardiovasc Med 2021; 8:711465. [PMID: 34938777 PMCID: PMC8687117 DOI: 10.3389/fcvm.2021.711465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Previous studies have shown that diazoxide can protect against myocardial ischemia-reperfusion injury (MIRI). The intranuclear hypoxia-inducible factor-1 (HIF-1)/hypoxia-response element (HRE) pathway has been shown to withstand cellular damage caused by MIRI. It remains unclear whether diazoxide post-conditioning is correlated with the HIF-1/HRE pathway in protective effect on cardiomyocytes. Methods: An isolated cardiomyocyte model of hypoxia-reoxygenation injury was established. Prior to reoxygenation, cardiomyocytes underwent post-conditioning treatment by diazoxide, and 5-hydroxydecanoate (5-HD), N-(2-mercaptopropionyl)-glycine (MPG), or dimethyloxallyl glycine (DMOG) followed by diazoxide. At the end of reoxygenation, ultrastructural morphology; mitochondrial membrane potential; interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS), and HIF-1α levels; and downstream gene mRNA and protein levels were analyzed to elucidate the protective mechanism of diazoxide post-conditioning. Results: Diazoxide post-conditioning enabled activation of the HIF-1/HRE pathway to induce myocardial protection. When the mitoKATP channel was inhibited and ROS cleared, the diazoxide effect was eliminated. DMOG was able to reverse the effect of ROS absence to restore the diazoxide effect. MitoKATP and ROS in the early reoxygenation phase were key to activation of the HIF-1/HRE pathway. Conclusion: Diazoxide post-conditioning promotes opening of the mitoKATP channel to generate a moderate ROS level that activates the HIF-1/HRE pathway and subsequently induces myocardial protection.
Collapse
Affiliation(s)
- Xi-Yuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Department of Anesthesiology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jia-Qi Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Si-Jing Cheng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Meng-Yuan Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Hai-Ying Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Wen-Jing Zhou
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
4
|
Zhou LY, Yao M, Tian ZR, Liu SF, Song YJ, Ye J, Li G, Sun YL, Cui XJ, Wang YJ. Muscone suppresses inflammatory responses and neuronal damage in a rat model of cervical spondylotic myelopathy by regulating Drp1-dependent mitochondrial fission. J Neurochem 2020; 155:154-176. [PMID: 32215908 DOI: 10.1111/jnc.15011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a common cause of disability with few treatments. Aberrant mitochondrial dynamics play a crucial role in the pathogenesis of various neurodegenerative diseases. Thus, regulation of mitochondrial dynamics may offer therapeutic benefit for the treatment of CSM. Muscone, the active ingredient of an odoriferous animal product, exhibits anti-inflammatory and neuroprotective effects for which the underlying mechanisms remain obscure. We hypothesized that muscone might ameliorate inflammatory responses and neuronal damage by regulating mitochondrial dynamics. To this end, the effects of muscone on a rat model of chronic cervical cord compression, as well as activated BV2 cells and injured neurons, were assessed. The results showed that muscone intervention improved motor function compared with vehicle-treated rats. Indeed, muscone attenuated pro-inflammatory cytokine expression, neuronal-apoptosis indicators in the lesion area, and activation of the nod-like receptor family pyrin domain-containing 3 inflammasome, nuclear transcription factor-κB, and dynamin-related protein 1 in Iba1- and βIII-tubulin-labeled cells. Compared with vehicle-treated rats, compression sites of muscone-treated animals exhibited elongated mitochondrial morphologies in individual cell types and reduced reactive oxygen species. In vitro results indicated that muscone suppressed microglial activation and neuronal damage by regulating related-inflammatory or apoptotic molecules. Moreover, muscone inhibited dynamin-related protein 1 activation in activated BV2 cells and injured neurons, whereby it rescued mitochondrial fragmentation and reactive oxygen species production, which regulate a wide range of inflammatory and apoptotic molecules. Our findings reveal that muscone attenuates neuroinflammation and neuronal damage in rats with chronic cervical cord compression by regulating mitochondrial fission events, suggesting its promise for CSM therapy.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang X, Galli G, Campanella M. Mitochondrial pharmacology: featured mechanisms and approaches for therapy translation. Br J Pharmacol 2019; 176:4245-4246. [PMID: 31793696 PMCID: PMC6887662 DOI: 10.1111/bph.14820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Gina Galli
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Michelangelo Campanella
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
- University College London Consortium for Mitochondrial ResearchUniversity College LondonLondonUK
| |
Collapse
|
6
|
Joshi S, Jarajapu YPR. Mitochondrial depolarization stimulates vascular repair-relevant functions of CD34 + cells via reactive oxygen species-induced nitric oxide generation. Br J Pharmacol 2018; 176:4373-4387. [PMID: 30367728 DOI: 10.1111/bph.14529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CD34+ haematopoietic stem/progenitor cells have revascularization potential and are now being tested for the treatment of ischaemic vascular diseases in clinical trials. We tested the hypothesis that mitochondrial depolarization stimulates the reparative functions of CD34+ cells. EXPERIMENTAL APPROACH Peripheral blood was obtained from healthy individuals (n = 63), and mononuclear cells (MNCs) were separated. MNCs were enriched for lineage negative cells, followed by isolation of CD34+ cells. Vascular repair-relevant functions of CD34+ cells, proliferation and migration, were evaluated in the presence and absence of diazoxide. Mitochondrial membrane potential, ROS and NO levels were evaluated by flow cytometry by using JC-1, mitoSOX and DAF-FM respectively. KEY RESULTS Diazoxide stimulated the proliferation and migration of CD34+ cells that were comparable to the responses induced by stromal-derived factor-1α (SDF) or VEGF. Effects of diazoxide were blocked by either 5-hydroxydecanoate (5HD), a selective mitochondrial ATP-sensitive potassium channel (mitoKATP ) inhibitor, or by L-NAME. Diazoxide induced mitochondrial depolarization, and NO and cGMP generation that were 5HD-sensitive. The generation of NO and cGMP by diazoxide was blocked by an endothelial NOS (eNOS)-selective inhibitor, NIO, but not by a neuronal (n)NOS-selective inhibitor, Nω -propyl-L-arginine (NPA). A Ca2+ chelator, BAPTA, Akt inhibitor, triciribine, or PI3K inhibitor, LY294002, inhibited the NO release induced by diazoxide. Phosphorylation of eNOS at Ser1177 and dephosphorylation at Thr495 were increased. Diazoxide-induced ROS generation and phosphorylation of eNOS at Ser1177 were reduced by NPA. CONCLUSION AND IMPLICATIONS Diazoxide stimulates vascular repair-relevant functions of CD34+ cells via the mitoKATP -dependent release of NO and ROS. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|