1
|
Sharma V, Sharma A, Wadje BN, Bharate SB. Benzopyrone, a privileged scaffold in drug discovery: An overview of FDA-approved drugs and clinical candidates. Med Res Rev 2024; 44:2035-2077. [PMID: 38532246 DOI: 10.1002/med.22032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Natural products have always served as an important source of drugs for treating various diseases. Among various privileged natural product scaffolds, the benzopyrone class of compounds has a substantial presence among biologically active compounds. One of the pioneering anticoagulant drugs, warfarin approved in 1954 bears a benzo-α-pyrone (coumarin) nucleus. The widely investigated psoriasis drugs, methoxsalen, and trioxsalen, also contain a benzo-α-pyrone nucleus. Benzo-γ-pyrone (chromone) containing drugs, cromoglic acid, and pranlukast were approved as treatments for asthma in 1982 and 2007, respectively. Numerous other small molecules with a benzopyrone core are under clinical investigation. The present review discusses the discovery, absorption, distribution, metabolism, excretion properties, and synthetic approaches for the Food and Drug Administration-approved and clinical-stage benzopyrone class of compounds. The role of the pyrone core in biological activity has also been discussed. The present review unravels the potential of benzopyrone core in medicinal chemistry and drug development.
Collapse
Affiliation(s)
- Venu Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Ankita Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Bhagyashri N Wadje
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sandip B Bharate
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Department of Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Mohammed ASA, Mohácsi G, Naveed M, Prorok J, Jost N, Virág L, Baczkó I, Topal L, Varró A. Cellular electrophysiological effects of the citrus flavonoid hesperetin in dog and rabbit cardiac ventricular preparations. Sci Rep 2024; 14:7237. [PMID: 38538818 PMCID: PMC10973458 DOI: 10.1038/s41598-024-57828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Recent experimental data shows that hesperetin, a citrus flavonoid, affects potassium channels and can prolong the QTc interval in humans. Therefore, in the present study we investigated the effects of hesperetin on various transmembrane ionic currents and on ventricular action potentials. Transmembrane current measurements and action potential recordings were performed by patch-clamp and the conventional microelectrode techniques in dog and rabbit ventricular preparations. At 10 µM concentration hesperetin did not, however, at 30 µM significantly decreased the amplitude of the IK1, Ito, IKr potassium currents. Hesperetin at 3-30 µM significantly and in a concentration-dependent manner reduced the amplitude of the IKs current. The drug significantly decreased the amplitudes of the INaL and ICaL currents at 30 µM. Hesperetin (10 and 30 µM) did not change the action potential duration in normal preparations, however, in preparations where the repolarization reserve had been previously attenuated by 100 nM dofetilide and 1 µg/ml veratrine, caused a moderate but significant prolongation of repolarization. These results suggest that hesperetin at close to relevant concentrations inhibits the IKs outward potassium current and thereby reduces repolarization reserve. This effect in certain specific situations may prolong the QT interval and consequently may enhance proarrhythmic risk.
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Mohácsi
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - Muhammad Naveed
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi School of Medicine, University of Szeged, Szeged, Hungary.
- HUN-REN-SZTE Research Group for Cardiovascular Pharmacology, Hungarian Research Network, Szeged, Hungary.
| |
Collapse
|
3
|
Odaka R, Saito T, Seki M, Iinuma A, Takatsu K, Hamaguchi S, Namekata I, Tanaka H. Selective Inhibitory Effect of Hesperetin on the Automaticity of the Guinea Pig Pulmonary Vein Myocardium. Biol Pharm Bull 2024; 47:2138-2142. [PMID: 39710382 DOI: 10.1248/bpb.b24-00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The effect of a citrus-derived flavonoid, hesperetin, on the automaticity and contraction of isolated guinea pig myocardium was examined. Hesperetin inhibited the rate of ectopic action potential firing of the pulmonary vein myocardium; the slope of the diastolic depolarization was decreased with minimum change in the action potential waveform. The effect was dependent on the concentration; the EC50 value for firing rate was 56.2 ± 14.2 µM and that for the diastolic depolarization slope was 41.6 ± 13.4 µM. In the right atria, hesperetin had no effect on the beating rate at concentrations up to 30 µM, but showed a negative chronotropic effect at 100 µM. In the ventricular papillary muscles, hesperetin had no effect on the contractile force at concentrations up to 30 µM, but showed a slight positive inotropic effect at 100 µM. In isolated pulmonary vein cardiomyocytes, 30 µM hesperetin decreased the firing rate of spontaneous Ca2+ transients. These results showed that hesperetin has a selective inhibitory action on the pulmonary vein automaticity with no inhibitory effect on the ventricular contractile force. Clarification of the mechanism of action of hesperetin as well as further exploration of flavonoids would provide clues for the development of pulmonary vein-selective therapeutic agents.
Collapse
Affiliation(s)
- Ryosuke Odaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Taro Saito
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Maika Seki
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Akane Iinuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Kousei Takatsu
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Shogo Hamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
4
|
Nakashima M, Goda N, Tenno T, Kotake A, Inotsume Y, Amaya M, Hiroaki H. Pharmacologic Comparison of High-Dose Hesperetin and Quercetin on MDCK II Cell Viability, Tight Junction Integrity, and Cell Shape. Antioxidants (Basel) 2023; 12:antiox12040952. [PMID: 37107328 PMCID: PMC10135814 DOI: 10.3390/antiox12040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The modulation of tight junction (TJ) integrity with small molecules is important for drug delivery. High-dose baicalin (BLI), baicalein (BLE), quercetin (QUE), and hesperetin (HST) have been shown to open TJs in Madin-Darby canine kidney (MDCK) II cells, but the mechanisms for HST and QUE remain unclear. In this study, we compared the effects of HST and QUE on cell proliferation, morphological changes, and TJ integrity. HST and QUE were found to have opposing effects on the MDCK II cell viability, promotion, and suppression, respectively. Only QUE, but not HST, induced a morphological change in MDCK II into a slenderer cell shape. Both HST and QUE downregulated the subcellular localization of claudin (CLD)-2. However, only QUE, but not HST, downregulated CLD-2 expression. Conversely, only HST was shown to directly bind to the first PDZ domain of ZO-1, a key molecule to promote TJ biogenesis. The TGFβ pathway partially contributed to the HST-induced cell proliferation, since SB431541 ameliorated the effect. In contrast, the MEK pathway was not involved by both the flavonoids, since U0126 did not revert their TJ-opening effect. The results offer insight for using HST or QUE as naturally occurring absorption enhancers through the paracellular route.
Collapse
Affiliation(s)
- Mio Nakashima
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
| | - Ayaka Kotake
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Yuko Inotsume
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Minako Amaya
- Cosmetics Research Department, Nicca Chemical Co., Ltd., Fukui 910-8670, Fukui, Japan
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
- BeCerllBar, LLC, Business Incubation Building, Nagoya University, Furocho, Chikusa ku, Nagoya 464-8601, Aichi, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Yanagito, Gifu 501-1112, Gifu, Japan
| |
Collapse
|
5
|
Liu P, Chen J, Qi J, Liu M, Zhang M, Xue Y, Li L, Liu Y, Shi J, Zhang Y, Chu L. Hesperetin ameliorates ischemia/hypoxia‐induced myocardium injury via inhibition of oxidative stress, apoptosis, and regulation of Ca
2+
homeostasis. Phytother Res 2022; 37:1787-1805. [PMID: 36437582 DOI: 10.1002/ptr.7693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Ischemia/hypoxia (I/H)-induced myocardial injury has a large burden worldwide. Hesperetin (HSP) has a cardioprotective effect, but the molecular mechanism underlying this is not clearly established. Here, we focused on the protective mechanisms of HSP against I/H-induced myocardium injury. H9c2 cardiomyocytes were challenged with CoCl2 for 22 h to imitate hypoxia after treatment groups received HSP for 4 h. The viability of H9c2 cardiomyocytes was evaluated, and cardiac function indices, reactive oxygen species, apoptosis, mitochondrial membrane potential (MMP), and intracellular Ca2+ concentration ([Ca2+ ]i ) were measured. L-type Ca2+ current (ICa-L ), myocardial contraction, and Ca2+ transients in isolated ventricular myocytes were also recorded. We found that HSP significantly increased the cell viability, and MMP while significantly decreasing cardiac impairment, oxidative stress, apoptosis, and [Ca2+ ]i caused by CoCl2 . Furthermore, HSP markedly attenuated ICa-L , myocardial contraction, and Ca2+ transients in a concentration-dependent manner. Our findings suggest a protective mechanism of HSP on I/H-induced myocardium injury by restoring oxidative balance, inhibiting apoptosis, improving mitochondrial function, and reducing Ca2+ influx via L-type Ca2+ channels (LTCCs). These data provide a new direction for HSP applied research as a LTCC inhibitor against I/H-induced myocardium injury.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Jian Chen
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Jiaying Qi
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Miaomiao Liu
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Muqing Zhang
- College of Integrative Medicine Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Yucong Xue
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Li Li
- School of Pharmacy Hebei Medical University Shijiazhuang Hebei People's Republic of China
| | - Yanshuang Liu
- College of Integrative Medicine Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| | - Jing Shi
- Department of Scientifc Research Management The Fourth Hospital of Hebei Medical University Shijiazhuang Hebei People's Republic of China
| | - Yixin Zhang
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province Shijiazhuang Hebei People's Republic of China
| | - Li Chu
- School of Pharmacy Hebei University of Chinese Medicine Shijiazhuang Hebei People's Republic of China
| |
Collapse
|
6
|
Ex vivo fecal fermentation of human ileal fluid collected after raspberry consumption modifies (poly)phenolics and modulates genoprotective effects in colonic epithelial cells. Redox Biol 2021; 40:101862. [PMID: 33486151 PMCID: PMC7823050 DOI: 10.1016/j.redox.2021.101862] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Diets rich in fruit and vegetables are associated with a decreased incidence of colorectal cancer (CRC) due, in part, to the bioactive (poly)phenolic components and their microbiota-mediated metabolites. This study investigated how such compounds, derived from ingested raspberries in the gastrointestinal tract, may exert protective effects by reducing DNA damage. Ileal fluids collected pre- and post-consumption of 300 g of raspberries by ileostomists (n = 11) were subjected to 24 h ex vivo fermentation with fecal inoculum to simulate interaction with colonic microbiota. The impact of fermentation on (poly)phenolics in ileal fluid was determined and the bioactivity of ileal fluids pre- and post fermentation investigated. (Poly)phenolic compounds including sanguiin H-6, sanguiin H-10 and cyanidin-3-O-sophoroside decreased significantly during fermentation while, in contrast, microbial catabolites, including 3-(3′-hydroxyphenyl)propanoic acid, 3-hydroxybenzoic acid and benzoic acid increased significantly. The post-raspberry ileal fermentate from 9 of the 11 ileostomates significantly decreased DNA damage (~30%) in the CCD 841 CoN normal cell line using an oxidative challenge COMET assay. The raspberry ileal fermentates also modulated gene expression of the nuclear factor 2–antioxidant responsive element (Nrf2-ARE) pathway involved in oxidative stress cytoprotection, namely Nrf2, NAD(P)H dehydrogenase, quinone-1 and heme oxygenase-1. Four of the phenolic catabolites were assessed individually, each significantly reducing DNA damage from an oxidative challenge over a physiologically relevant 10–100 μM range. They also induced a differential pattern of expression of key genes in the Nrf2-ARE pathway in CCD 841 CoN cells. The study indicates that the colon-available raspberry (poly)phenols and their microbial-derived catabolites may play a role in protection against CRC in vivo. Health effects of dietary (poly)phenols linked to interactions within the GI tract. Ileostomy-based bioavailability studies allow effective interrogation of the GI tract. Fecal fermentation of raspberry-enriched ileal fluid, increases phenolic content. Raspberry ileal fluid fermentates & phenolic acids reduce DNA damage in colonocytes. Cytoprotective Nrf2-ARE pathway modulated by ileal fluid fermentates & phenolic acids.
Collapse
|
7
|
Son SH, Cho YY, Yoo HS, Lee SJ, Kim YM, Jang HJ, Kim DH, Shin JW, Kim NJ. Divergent synthesis of flavones and flavanones from 2′-hydroxydihydrochalcones via palladium(ii)-catalyzed oxidative cyclization. RSC Adv 2021; 11:14000-14006. [PMID: 35423945 PMCID: PMC8697754 DOI: 10.1039/d1ra01672e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Divergent and versatile synthetic routes to flavones and flavanones via efficient Pd(ii) catalysis are disclosed. These Pd(ii) catalyses expediently provide a variety of flavones and flavanones from 2′-hydroxydihydrochalcones as common intermediates, depending on oxidants and additives, via discriminate oxidative cyclization sequences involving dehydrogenation, respectively, in a highly atom-economic manner. Divergent and versatile synthetic routes to flavones and flavanones via efficient Pd(ii) catalysis are disclosed.![]()
Collapse
Affiliation(s)
- Seung Hwan Son
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Yang Yil Cho
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Hyung-Seok Yoo
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Soo Jin Lee
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Young Min Kim
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Hyu Jeong Jang
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Dong Hwan Kim
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences
- Graduate School
- Kyung Hee University
- Seoul 02447
- Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy
- Kyung Hee University
- Seoul 02447
- Republic of Korea
- Department of Life and Nanopharmaceutical Sciences
| |
Collapse
|
8
|
Pereira-Caro G, Clifford MN, Polyviou T, Ludwig IA, Alfheeaid H, Moreno-Rojas JM, Garcia AL, Malkova D, Crozier A. Plasma pharmacokinetics of (poly)phenol metabolites and catabolites after ingestion of orange juice by endurance trained men. Free Radic Biol Med 2020; 160:784-795. [PMID: 32927016 DOI: 10.1016/j.freeradbiomed.2020.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
Abstract
The health benefits of orange juice (OJ) consumption are attributed in part to the circulating flavanone phase II metabolites and their microbial-derived ring fission phenolic catabolites. The present study investigated these compounds in the bloodstream after acute intake of 500 mL of OJ. Plasma samples obtained at 0, 1, 2, 3, 4, 5, 6, 7, 8 and 24 h after OJ intake were analysed by HPLC-HR-MS. Eleven flavanone metabolites and 36 phenolic catabolites were identified and quantified in plasma. The main metabolites were hesperetin-3'-sulfate with a peak plasma concentration (Cmax) of 80 nmol/L, followed by hesperetin-7-glucuronide (Cmax 24 nmol/L), hesperetin-3'-glucuronide (Cmax 18 nmol/L) and naringenin-7-glucuronide (Cmax 21 nmol/L). Among the main phenolic catabolites to increase in plasma after OJ consumption were 3'-methoxycinnamic acid-4'-sulfate (Cmax 19 nmol/L), 3-hydroxy-3-(3'-hydroxy-4'-methoxyphenyl)propanoic acid (Cmax 20 nmol/L), 3-(3'-hydroxy-4'-methoxyphenyl)propanoic acid (Cmax 19 nmol/L), 3-(4'-hydroxyphenyl)propanoic acid (Cmax 25 nmol/L), and 3-(phenyl)propanoic acid (Cmax 19 nmol/L), as well as substantial amounts of phenylacetic and hippuric acids. The comprehensive plasma pharmacokinetic profiles that were obtained are of value to the design of future ex vivo cell studies, aimed at elucidating the mechanisms underlying the potential health benefits of OJ consumption. CLINICAL TRIAL REGISTRATION NUMBER: This trial was registered at clinicaltrials.gov as NCT02627547.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Food and Health, Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda Del Obispo, 14004, Córdoba, Spain.
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences University of Surrey, Guildford, GU2 5XH, United Kingdom; Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, 3168, Australia
| | - Thelma Polyviou
- Human Nutrition, New Lister Building, University of Glasgow, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Iziar A Ludwig
- Medicinal Chemistry Laboratory, Center for Applied Medicinal Research, University of Navarra, Avda. Pío XII 55, E-31008, Pamplona, Spain
| | - Hani Alfheeaid
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - José Manuel Moreno-Rojas
- Department of Food and Health, Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda Del Obispo, 14004, Córdoba, Spain
| | - Ada L Garcia
- Human Nutrition, New Lister Building, University of Glasgow, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Dalia Malkova
- Human Nutrition, New Lister Building, University of Glasgow, Glasgow Royal Infirmary, 10-16 Alexandra Parade, Glasgow, G31 2ER, UK
| | - Alan Crozier
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, G12 8QQ, UK; United Kingdom and Department of Nutrition, University of California, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
10
|
|
11
|
Alvarez-Collazo J, López-Requena A, Alvarez JL, Talavera K. The Citrus Flavonoid Hesperetin Has an Inadequate Anti-Arrhythmic Profile in the ΔKPQ Na V1.5 Mutant of the Long QT Type 3 Syndrome. Biomolecules 2020; 10:biom10060952. [PMID: 32599724 PMCID: PMC7355927 DOI: 10.3390/biom10060952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022] Open
Abstract
Type 3 long QT syndromes (LQT3) are associated with arrhythmogenic gain-of-function mutations in the cardiac voltage-gated Na+ channel (hNaV1.5). The citrus flavanone hesperetin (HSP) was previously suggested as a template molecule to develop new anti-arrhythmic drugs, as it blocks slowly-inactivating currents carried by the LQT3-associated hNaV1.5 channel mutant R1623Q. Here we investigated whether HSP also has potentially beneficial effects on another LQT3 hNaV1.5 channel variant, the ΔKPQ, which is associated to lethal ventricular arrhythmias. We used whole-cell patch-clamp to record Na+ currents (INa) in HEK293T cells transiently expressing hNaV1.5 wild type or ΔKPQ mutant channels. HSP blocked peak INa and the late INa carried by ΔKPQ mutant channels with an effective concentration of ≈300 μM. This inhibition was largely voltage-independent and tonic. HSP decreased the rate of inactivation of ΔKPQ channels and, consequently, was relatively weak in reducing the intracellular Na+ load in this mutation. We conclude that, although HSP has potential value for the treatment of the R1623Q LQT3 variant, this compound is inadequate to treat the LQT3 associated to the ΔKPQ genetic variant. Our results underscore the precision medicine rationale of better understanding the basic pathophysiological and pharmacological mechanisms to provide phenotype- genotype-directed individualization of treatment.
Collapse
|
12
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
13
|
Alvarez‐Collazo J, López‐Requena A, Galán L, Talavera A, Alvarez JL, Talavera K. The citrus flavanone hesperetin preferentially inhibits slow-inactivating currents of a long QT syndrome type 3 syndrome Na + channel mutation. Br J Pharmacol 2019; 176:1090-1105. [PMID: 30650182 PMCID: PMC6451064 DOI: 10.1111/bph.14577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE The citrus flavanone hesperetin has been proposed for the treatment of several human pathologies, but its cardiovascular actions remain largely unexplored. Here, we evaluated the effect of hesperetin on cardiac electrical and contractile activities, on aortic contraction, on the wild-type voltage-gated NaV 1.5 channel, and on a channel mutant (R1623Q) associated with lethal ventricular arrhythmias in the long QT syndrome type 3 (LQT3). EXPERIMENTAL APPROACH We used cardiac surface ECG and contraction force recordings to evaluate the effects of hesperetin in rat isolated hearts and aortic rings. Whole-cell patch clamp was used to record NaV 1.5 currents (INa ) in rat ventricular cardiomyocytes and in HEK293T cells expressing hNaV 1.5 wild-type or mutant channels. KEY RESULTS Hesperetin increased the QRS interval and heart rate and decreased the corrected QT interval and the cardiac and aortic contraction forces at concentrations equal or higher than 30 μmol·L-1 . Hesperetin blocked rat and human NaV 1.5 channels with an effective inhibitory concentration of ≈100 μmol·L-1 . This inhibition was enhanced at depolarized holding potentials and higher stimulation frequency and was reduced by the disruption of the binding site for local anaesthetics. Hesperetin increased the rate of inactivation and preferentially inhibited INa during the slow inactivation phase, these effects being more pronounced in the R1623Q mutant. CONCLUSIONS AND IMPLICATIONS Hesperetin preferentially inhibits the slow inactivation phase of INa , more markedly in the mutant R1623Q. Hesperetin could be used as a template to develop drugs against lethal cardiac arrhythmias in LQT3.
Collapse
Affiliation(s)
- Julio Alvarez‐Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López‐Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| | - Loipa Galán
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Ariel Talavera
- Laboratory of Microscopy, Center for Microscopy and Molecular ImagingUniversité Libre de BruxellesGosseliesBelgium
| | - Julio L. Alvarez
- Laboratory of ElectrophysiologyInstitute of Cardiology and Cardiovascular SurgeryHavanaCuba
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular MedicineVIB‐KU Leuven Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|