1
|
Parichatikanond W, Duangrat R, Nuamnaichati N, Mangmool S. Role of A 1 adenosine receptor in cardiovascular diseases: Bridging molecular mechanisms with therapeutic opportunities. Exp Mol Pathol 2025; 141:104952. [PMID: 39879680 DOI: 10.1016/j.yexmp.2025.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Adenosine serves as a critical homeostatic regulator, exerting influence over physiological and pathological conditions in the cardiovascular system. During cellular stress, increased extracellular adenosine levels have been implicated in conferring cardioprotective effects through the activation of adenosine receptors with the A1 adenosine receptor subtype showing the highest expression in the heart. A1 adenosine receptor stimulation inhibits adenylyl cyclase activity via heterotrimeric Gi proteins, leading to the activation of distinct downstream effectors involved in cardiovascular homeostasis. While the comprehensive characterization of the pharmacological functions and intracellular signaling pathways associated with the A1 adenosine receptor subtype is still ongoing, this receptor is widely recognized as a crucial pharmacological target for the treatment of various states of cardiovascular diseases (CVDs). In this review, we focus on elucidating signal transduction of A1 adenosine receptor, particularly Gi protein-dependent and -independent pathways, and their relevance to cardiovascular protective effects as well as pathological consequences during cellular and tissue stresses in the cardiovascular system. Additionally, we provide comprehensive updates and detailed insights into a range of A1 adenosine receptor agonists and antagonists, detailing their development and evaluation through preclinical and clinical studies with a specific focus on their potential for the management of CVDs, especially heart diseases.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Perfilova VN, Muzyko EA, Taran AS, Shevchenko AA, Naumenko LV. Problems and prospects for finding new pharmacological agents among adenosine receptor agonists, antagonists, or their allosteric modulators for the treatment of cardiovascular diseases. BIOMEDITSINSKAIA KHIMIIA 2023; 69:353-370. [PMID: 38153051 DOI: 10.18097/pbmc20236906353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
A1-adenosine receptors (A1AR) are widely distributed in the human body and mediate many different effects. They are abundantly present in the cardiovascular system, where they control angiogenesis, vascular tone, heart rate, and conduction. This makes the cardiovascular system A1AR an attractive target for the treatment of cardiovascular diseases (CVD). The review summarizes the literature data on the structure and functioning of A1AR, and analyzes their involvement in the formation of myocardial hypertrophy, ischemia-reperfusion damage, various types of heart rhythm disorders, chronic heart failure, and arterial hypertension. Special attention is paid to the role of some allosteric regulators of A1AR as potential agents for the CVD treatment.
Collapse
Affiliation(s)
- V N Perfilova
- Volgograd State Medical University, Volgograd, Russia; Volgograd Medical Research Center, Volgograd, Russia
| | - E A Muzyko
- Volgograd State Medical University, Volgograd, Russia
| | - A S Taran
- Volgograd State Medical University, Volgograd, Russia
| | | | - L V Naumenko
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
4
|
Cooper SL, Wragg ES, Pannucci P, Soave M, Hill SJ, Woolard J. Regionally selective cardiovascular responses to adenosine A 2A and A 2B receptor activation. FASEB J 2022; 36:e22214. [PMID: 35230706 PMCID: PMC9415116 DOI: 10.1096/fj.202101945r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/25/2022]
Abstract
Adenosine is a local mediator that regulates changes in the cardiovascular system via activation of four G protein-coupled receptors (A1 , A2A , A2B , A3 ). Here, we have investigated the effect of A2A and A2B -selective agonists on vasodilatation in three distinct vascular beds of the rat cardiovascular system. NanoBRET ligand binding studies were used to confirm receptor selectivity. The regional hemodynamic effects of adenosine A2A and A2B selective agonists were investigated in conscious rats. Male Sprague-Dawley rats (350-450 g) were chronically implanted with pulsed Doppler flow probes on the renal artery, mesenteric artery, and the descending abdominal aorta. Cardiovascular responses were measured following intravenous infusion (3 min for each dose) of the A2A -selective agonist CGS 21680 (0.1, 0.3, 1 µg kg-1 min-1 ) or the A2B -selective agonist BAY 60-6583 (4,13.3, 40 µg kg-1 min-1 ) following predosing with the A2A -selective antagonist SCH 58261 (0.1 or 1 mg kg-1 min-1 ), the A2B /A2A antagonist PSB 1115 (10 mg kg-1 min-1 ) or vehicle. The A2A -selective agonist CGS 21680 produced a striking increase in heart rate (HR) and hindquarters vascular conductance (VC) that was accompanied by a significant decrease in mean arterial pressure (MAP) in conscious rats. In marked contrast, the A2B -selective agonist BAY 60-6583 significantly increased HR and VC in the renal and mesenteric vascular beds, but not in the hindquarters. Taken together, these data indicate that A2A and A2B receptors are regionally selective in their regulation of vascular tone. These results suggest that the development of A2B receptor agonists to induce vasodilatation in the kidney may provide a good therapeutic approach for the treatment of acute kidney injury.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Edward S. Wragg
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Patrizia Pannucci
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Mark Soave
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamNottinghamUK,Centre of Membrane Proteins and ReceptorsUniversity of Birmingham and University of NottinghamMidlandsUK
| |
Collapse
|
5
|
Van Daele M, Cooper SL, Pannucci P, Wragg ES, March J, de Jong I, Woolard J. Monitoring haemodynamic changes in rodent models to better inform safety pharmacology: Novel insights from in vivo studies and waveform analysis. JRSM Cardiovasc Dis 2022; 11:20480040221092893. [PMID: 35646334 PMCID: PMC9133998 DOI: 10.1177/20480040221092893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
Animal models are essential for assessing cardiovascular responses to novel therapeutics. Cardiovascular safety liabilities represent a leading cause of drug attrition and better preclinical measurements are essential to predict drug-related toxicities. Presently, radiotelemetric approaches recording blood pressure are routinely used in preclinical in vivo haemodynamic assessments, providing valuable information on therapy-associated cardiovascular effects. Nonetheless, this technique is chiefly limited to the monitoring of blood pressure and heart rate alone. Alongside these measurements, Doppler flowmetry can provide additional information on the vasculature by simultaneously measuring changes in blood flow in multiple different regional vascular beds. However, due to the time-consuming and expensive nature of this approach, it is not widely used in the industry. Currently, analysis of waveform data obtained from telemetry and Doppler flowmetry typically examines averages or peak values of waveforms. Subtle changes in the morphology and variability of physiological waveforms have previously been shown to be early markers of toxicity and pathology. Therefore, a detailed analysis of pressure and flowmetry waveforms could enhance the understanding of toxicological mechanisms and the ability to translate these preclinical observations to clinical outcomes. In this review, we give an overview of the different approaches to monitor the effects of drugs on cardiovascular parameters (particularly regional blood flow, heart rate and blood pressure) and suggest that further development of waveform analysis could enhance our understanding of safety pharmacology, providing valuable information without increasing the number of in vivo studies needed.
Collapse
Affiliation(s)
- Marieke Van Daele
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Patrizia Pannucci
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Edward S Wragg
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Iwan de Jong
- Maastricht Instruments BV, Maastricht University, Maastricht, The Netherlands
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
6
|
Cooper SL, March J, Sabbatini AR, Hill SJ, Jörg M, Scammells PJ, Woolard J. The effect of two selective A 1 -receptor agonists and the bitopic ligand VCP746 on heart rate and regional vascular conductance in conscious rats. Br J Pharmacol 2019; 177:346-359. [PMID: 31596949 PMCID: PMC6989947 DOI: 10.1111/bph.14870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose Adenosine is a local mediator that regulates physiological and pathological processes via activation of four GPCRs (A1, A2A, A2B, and A3). We have investigated the effect of two A1‐receptor‐selective agonists and the novel A1‐receptor bitopic ligand VCP746 on the rat cardiovascular system. Experimental Approach The regional haemodynamic responses of these agonist was investigated in conscious rats. Male Sprague–Dawley rats (350–450 g) were chronically implanted with pulsed Doppler flow probes on the renal, mesenteric arteries and the descending abdominal aorta and the jugular vein and caudal artery catheterized. Cardiovascular responses were measured following intravenous infusion (3 min each dose) of CCPA (120, 400, and 1,200 ng·kg−1·min−1), capadenoson or adenosine (30, 100, and 300 μg·kg−1·min−1), or VCP746 (6, 20, and 60 μg·kg−1·min−1) following pre‐dosing with DPCPX (0.1 mg·kg−1, i.v.) or vehicle. Key Results CCPA produced a significant A1‐receptor‐mediated decrease in heart rate that was accompanied by vasoconstrictions in the renal and mesenteric vascular beds but an increase in hindquarters vascular conductance. The partial agonist capadenoson also produced an A1‐receptor‐mediated bradycardia. In contrast, VCP746 produced increases in heart rate and renal and mesenteric vascular conductance that were not mediated by A1‐receptors. In vitro studies confirmed that VCP746 had potent agonist activity at both A2A‐ and A2B‐receptors. Conclusions and Implications These results suggest VCP746 mediates its cardiovascular effects via activation of A2 rather than A1 adenosine receptors. This has implications for the design of future bitopic ligands that incorporate A1 allosteric ligand moieties.
Collapse
Affiliation(s)
- Samantha L Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Julie March
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Andrea R Sabbatini
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| | - Manuela Jörg
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK
| |
Collapse
|