1
|
Romero DG, de Lange P. Editorial: A year in review: discussions in cellular endocrinology. Front Endocrinol (Lausanne) 2023; 14:1279895. [PMID: 37854180 PMCID: PMC10581340 DOI: 10.3389/fendo.2023.1279895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Affiliation(s)
- Damian G. Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center of Excellence in Perinatal Research, Jackson, MS, United States
- Women’s Health Research Center, Jackson, MS, United States
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Pieter de Lange
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
2
|
Chourey S, Wang R, Ye Q, Reddy CN, Sun S, Takenaka N, Powell WS, Rokach J. Concise Syntheses of Microsomal Metabolites of a Potent OXE (Oxoeicosanoid) Receptor Antagonist. Chem Pharm Bull (Tokyo) 2023; 71:534-544. [PMID: 37394602 DOI: 10.1248/cpb.c22-00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent eosinophil chemoattractant among lipid mediators, and its actions are mediated by the selective oxoeicosanoid (OXE) receptor. Our group previously developed a highly potent indole-based OXE antagonist, S-C025, with an IC50 value of 120 pM. S-C025 was converted to a number of metabolites in the presence of monkey liver microsomes. Complete chemical syntheses of authentic standards enabled us to identify that the four major metabolites were derived by the oxidation at its benzylic and N-methyl carbon atoms. Herein we report concise syntheses of the four major metabolites of S-C025.
Collapse
Affiliation(s)
- Shishir Chourey
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Rui Wang
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Qiuji Ye
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Shiyu Sun
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - Norito Takenaka
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre
| | - Joshua Rokach
- Claude Pepper Institute and Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology
| |
Collapse
|
3
|
Cossette C, Chourey S, Ye Q, Reddy CN, Wang R, Poulet S, Slobodchikova I, Vuckovic D, Rokach J, Powell WS. Metabolism of anti-inflammatory OXE (oxoeicosanoid) receptor antagonists by nonhuman primates. Eur J Pharm Sci 2022; 172:106144. [DOI: 10.1016/j.ejps.2022.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
|
4
|
Cossette C, Miller LA, Ye Q, Chourey S, Reddy CN, Rokach J, Powell WS. Targeting the oxoeicosanoid (OXE) receptor with a selective antagonist inhibits allergen-induced pulmonary inflammation in non-human primates. Br J Pharmacol 2021; 179:322-336. [PMID: 34766334 DOI: 10.1111/bph.15721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 10/01/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-lipoxygenase product 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is a potent chemoattractant for eosinophils and neutrophils. However, little is known about its pathophysiological role because of the lack of a rodent ortholog of its OXE receptor. The present study aimed to determine whether the selective OXE receptor antagonist S-Y048 can inhibit allergen-induced pulmonary inflammation in a monkey model of asthma. EXPERIMENTAL APPROACH Monkeys sensitized to house dust mite antigen (HDM) were treated with either vehicle or S-Y048 prior to challenge with aerosolized HDM and bronchoalveolar (BAL) fluid was obtained 24 h later. After six weeks, animals that had initially been treated with vehicle received S-Y048 and vice versa for animals initially treated with S-Y048. Eosinophils and neutrophils in BAL and lung tissue samples were evaluated, as well as mucus-containing cells in bronchi. KEY RESULTS HDM significantly increased the numbers of eosinophils, neutrophils, and macrophages in BAL fluid 24 h after challenge. These responses were all significantly inhibited by S-Y048, which also reduced the numbers of eosinophils and neutrophils in lung tissue 24 h after challenge with HDM. S-Y048 also significantly reduced the numbers of bronchial epithelial cells staining for mucin and MUC5AC after antigen challenge. CONCLUSION AND IMPLICATIONS This study provides the first evidence that 5-oxo-ETE may play an important role in inducing allergen-induced pulmonary inflammation and could also be involved in regulating MUC5AC in goblet cells. OXE receptor antagonists such as S-Y048 may useful therapeutic agents in asthma and other eosinophilic as well as neutrophilic diseases.
Collapse
Affiliation(s)
- Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, CA, United States
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States.,Present address: Dept. Chemistry, Rice University, Houston, TX, USA
| | - Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States.,Present address: Chemical Development Dept., Curia Global, Albany, NY, USA
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States.,Flamma USA LLC, Malvern, PA
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
6
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
7
|
Schneider AL, Schleimer RP, Tan BK. Targetable pathogenic mechanisms in nasal polyposis. Int Forum Allergy Rhinol 2021; 11:1220-1234. [PMID: 33660425 DOI: 10.1002/alr.22787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) represents a challenging disease entity with significant rates of recurrence following appropriate medical and surgical therapy. Recent approval of targeted biologics in CRSwNP compels deeper understanding of underlying disease pathophysiology. Both of the approved biologics for CRSwNP modulate the type 2 inflammatory pathway, and the majority of drugs in the clinical trials pathway are similarly targeted. However, there remain multiple other pathogenic mechanisms relevant to CRSwNP for which targeted therapeutics already exist in other inflammatory diseases that have not been studied directly. In this article we summarize pathogenic mechanisms of interest in CRSwNP and discuss the results of ongoing clinical studies of targeted therapeutics in CRSwNP and other related human inflammatory diseases.
Collapse
Affiliation(s)
| | - Robert P Schleimer
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce K Tan
- Department of Otolaryngology, Head and Neck Surgery, Chicago, Illinois, USA.,Division of Allergy-Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Powell WS, Rokach J. Targeting the OXE receptor as a potential novel therapy for asthma. Biochem Pharmacol 2020; 179:113930. [PMID: 32240653 PMCID: PMC10656995 DOI: 10.1016/j.bcp.2020.113930] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite formed by oxidation of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase. It is the only 5-LO product with appreciable chemoattractant activity for human eosinophils. Its actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, basophils, neutrophils and monocytes. Orthologs of the OXER1 gene, which encodes this receptor, are found in many species except for rodents. Intradermal injection of 5-oxo-ETE into humans and monkeys elicits eosinophil infiltration into the skin, raising the possibility that it may play a pathophysiological role in eosinophilic diseases. To investigate this and possibly identify a novel therapy we sought to prepare synthetic antagonists that could selectively block the OXE receptor. We synthesized a series of indole-based compounds bearing substituents that mimic the regions of 5-oxo-ETE that are required for biological activity, which we modified to reduce metabolism. The most potent of these OXE receptor antagonists is S-Y048, which is a potent inhibitor of 5-oxo-ETE-induced calcium mobilization (IC50, 20 pM) and has a long half-life following oral administration. S-Y048 inhibited allergen-induced eosinophil infiltration into the skin of rhesus monkeys that had been experimentally sensitized to house dust mite and inhibited pulmonary inflammation resulting from challenge with aerosolized allergen. These data provide the first evidence for a pathophysiological role for 5-oxo-ETE in mammals and suggest that potent and selective OXE receptor antagonists such as S-Y048 may be useful therapeutic agents in asthma and other eosinophilic diseases.
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6982, USA
| |
Collapse
|
9
|
Miller LA, Cossette C, Chourey S, Ye Q, Reddy CN, Rokach J, Powell WS. Inhibition of allergen-induced dermal eosinophilia by an oxoeicosanoid receptor antagonist in non-human primates. Br J Pharmacol 2020; 177:360-371. [PMID: 31655023 PMCID: PMC6989951 DOI: 10.1111/bph.14872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), acting via the OXE receptor, is unique among 5-lipoxygenase products in its ability to directly induce human eosinophil migration, suggesting its involvement in eosinophilic diseases. To address this hypothesis, we synthesized selective indole-based OXE receptor antagonists. Because rodents lack an OXE receptor orthologue, we sought to determine whether these antagonists could attenuate allergen-induced skin eosinophilia in sensitized monkeys. EXPERIMENTAL APPROACH In a pilot study, cynomolgus monkeys with environmentally acquired sensitivity to Ascaris suum were treated orally with the "first-generation" OXE antagonist 230 prior to intradermal injection of 5-oxo-ETE or Ascaris extract. Eosinophils were evaluated in punch biopsy samples taken 6 or 24 hr later. We subsequently treated captive-bred rhesus monkeys sensitized to house dust mite (HDM) allergen with a more recently developed OXE antagonist, S-Y048, and evaluated its effects on dermal eosinophilia induced by either 5-oxo-ETE or HDM. KEY RESULTS In a pilot experiment, both 5-oxo-ETE and Ascaris extract induced dermal eosinophilia in cynomolgus monkeys, which appeared to be reduced by 230. Subsequently, we found that the related OXE antagonist S-Y048 is a highly potent inhibitor of 5-oxo-ETE-induced activation of rhesus monkey eosinophils in vitro and has a half-life in plasma of about 6 hr after oral administration. S-Y048 significantly inhibited eosinophil infiltration into the skin in response to both intradermally administered 5-oxo-ETE and HDM. CONCLUSIONS AND IMPLICATIONS 5-Oxo-ETE may play an important role in allergen-induced eosinophilia. Blocking its effects with S-Y048 may provide a novel therapeutic approach for eosinophilic diseases.
Collapse
Affiliation(s)
- Lisa A. Miller
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Chantal Cossette
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| | - Shishir Chourey
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of Chemical DevelopmentAlbany Molecular Research Inc.Albany, New York
| | - Qiuji Ye
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of ChemistryRice UniversityHoustonTexas
| | - Chintam Nagendra Reddy
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Synthetic ChemistryOlon Ricerca Bioscience LLCConcordOhio
| | - Joshua Rokach
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
| | - William S. Powell
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| |
Collapse
|
10
|
Ye Q, Chourey S, Reddy CN, Wang R, Cossette C, Gravel S, Slobodchikova I, Vuckovic D, Rokach J, Powell WS. Novel highly potent OXE receptor antagonists with prolonged plasma lifetimes that are converted to active metabolites in vivo in monkeys. Br J Pharmacol 2020; 177:388-401. [PMID: 31655025 PMCID: PMC6989946 DOI: 10.1111/bph.14874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-lipoxygenase product 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), acting through the OXE receptor, is a potent eosinophil chemoattractant that may be an important proinflammatory mediator in eosinophilic diseases such as asthma. We previously identified a series of indole-based OXE receptor antagonists that rapidly appear in the blood following oral administration but have limited lifetimes. The objective of this study was to increase the potency and plasma half-lives of these compounds and thereby identify the optimal candidate for future preclinical studies in monkeys, as rodents do not have an OXE receptor orthologue. EXPERIMENTAL APPROACH We synthesized a series of substituted phenylalkyl indoles and compared their antagonist potencies, pharmacokinetics, and metabolism to those of our earlier compounds. The potencies of some of their metabolites were also investigated. KEY RESULTS Among the compounds tested, the S-enantiomer of the m-chlorophenyl compound (S-Y048) was the most potent, with an pIC50 of about 10.8 for inhibition of 5-oxo-ETE-induced calcium mobilization in human neutrophils. When administered orally to cynomolgus monkeys, S-Y048 rapidly appeared in the blood and had a half-life in plasma of over 7 hr, considerably longer than any of the other OXE analogues tested. A major hydroxylated metabolite, with a potency close to that of its precursor, was identified in plasma. CONCLUSION AND IMPLICATIONS Because of its highly potent antagonist activity and its long lifetime in vivo, S-Y048 may be a useful anti-inflammatory agent for the treatment of eosinophilic diseases such as asthma, allergic rhinitis, and atopic dermatitis.
Collapse
Affiliation(s)
- Qiuji Ye
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
- Present address:
Department of ChemistryRice UniversityHoustonTexas
| | - Shishir Chourey
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
- Present address:
Chemical Development DepartmentAlbany Molecular Research Inc.AlbanyNew York
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
- Present address:
Synthetic ChemistryOlon Ricerca BioscienceConcordOhio
| | - Rui Wang
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
| | - Chantal Cossette
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontrealQCCanada
| | - Sylvie Gravel
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontrealQCCanada
| | - Irina Slobodchikova
- Department of Chemistry and Biochemistry and PERFORM CentreConcordia UniversityMontrealQCCanada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry and PERFORM CentreConcordia UniversityMontrealQCCanada
| | - Joshua Rokach
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
| | - William S. Powell
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontrealQCCanada
| |
Collapse
|