1
|
Cao S, Li M, Cui Z, Li Y, Niu W, Zhu W, Li J, Duan L, Lun S, Gao Z, Zhang Y. Establishment and validation of the prognostic risk model based on the anoikis-related genes in esophageal squamous cell carcinoma. Ann Med 2024; 56:2418338. [PMID: 39444152 PMCID: PMC11504171 DOI: 10.1080/07853890.2024.2418338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a malignant condition in humans. Anoikis-related genes (ARGs) are crucial to cancer progression. Therefore, more studies on the relationship between ARGs and ESCC are warranted. METHODS The study acquired ESCC-related transcriptome data from TCGA. Differentially expressed ARGs (DE-ARGs) were obtained by differential analysis and candidates were filtered out by survival analysis. Prognostic genes were determined by Cox and LASSO regression. A risk model was constructed based on prognostic gene expressions. An immune infiltration study was done to explain how these genes contribute to ESCC development. The IC50 test was adopted to assess the clinical response of chemotherapy drugs. Single cell analysis was performed on the GSE145370 dataset. Moreover, the prognostic gene expressions were detected by qRT-PCR. RESULTS 53 DE-ARGs were screened and four candidate genes including PBK, LAMC2, TNFSF10 and KL were obtained. Cox and LASSO regression identified the two prognostic genes, TNFSF10 and PBK. Immuno-infiltration analysis revealed positive associations of PBK with Macrophages M0 cells, and TNFSF10 with Macrophages M1 cells. The IC50 values of predicted drugs, in the case of Tozasertib 1096 and WIKI4 1940, were significantly variant between risk groups. Single cell analysis revealed that TNFSF10 and PBK levels were higher in epithelial cells than in other cells. The prognostic genes expression results by qRT-PCR were compatible with the dataset analysis. CONCLUSION The study established an ARG prognosis model of ESCC. It provided a reference for the research of ARGs in ESCC.
Collapse
Affiliation(s)
- Shasha Cao
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Ming Li
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhiying Cui
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Yutong Li
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Wei Niu
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Weiwei Zhu
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Junkuo Li
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Lijuan Duan
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Shumin Lun
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhaowei Gao
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Yaowen Zhang
- Henan Medical key Laboratory of Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|
2
|
Li D, Bao Q, Ren S, Ding H, Guo C, Gao K, Wan J, Wang Y, Zhu M, Xiong Y. Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma. Genet Res (Camb) 2024; 2024:8217215. [PMID: 39297018 PMCID: PMC11410409 DOI: 10.1155/2024/8217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies, poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of genes related to anoikis in HCC is yet to be elucidated. Methods This paper's data (TCGA-HCC) were retrieved from the database of the Cancer Genome Atlas (TCGA). Differential gene expression with prognostic implications for anoikis was identified by performing both the univariate Cox and differential expression analyses. Through unsupervised cluster analysis, we clustered the samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis (CRA), a clinical predictive gene signature was generated from the DEGs. The Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. The external validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confirmed the expression of risk genes. Results In total, 23 prognostic DEGs were identified. Based on these 23 DEGs, the samples were categorized into four distinct subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and SLC2A1. The gene signature efficiently distinguished individuals into two risk groups, specifically low and high, demonstrating markedly higher survival rates in the former group. Significant correlations were observed between the expression of these risk genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those obtained from the training cohort analysis. The results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were upregulated in HCC samples. Conclusion The outcomes of this paper underscore the effectiveness of the clinical prognostic gene signature, established utilizing anoikis-related genes, in accurately stratifying patients. This signature holds promise in advancing the development of personalized therapy for HCC.
Collapse
Affiliation(s)
- Dongqian Li
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Qian Bao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Shiqi Ren
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Kai Gao
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - MingYan Zhu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
3
|
Song M, Qu Y, Jia H, Zhang Y, Liu S, Laster KV, Choi BY, Tian J, Gu T, Chen H, Liu K, Lee MH, Dong Z. Targeting TAOK1 with resveratrol inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 2024; 63:991-1008. [PMID: 38376345 DOI: 10.1002/mc.23703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingzi Qu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Huajie Jia
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunqing Zhang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Shihui Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, South Korea
| | - Jie Tian
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Tingxuan Gu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China
| |
Collapse
|
4
|
Chen X, Li H. Bruceine D and Narclasine inhibit the proliferation of breast cancer cells and the prediction of potential drug targets. PLoS One 2024; 19:e0297203. [PMID: 38215156 PMCID: PMC10786365 DOI: 10.1371/journal.pone.0297203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common female malignancies. This study explored the underlying mechanism through which the two plant compounds (Brucaine D and Narclasine) inhibited the proliferation of breast cancer cells. OBJECTIVE The purpose of this study was to explore the effect of Brucaine D and Narclasine on breast cancer development and their potential drug targets. METHODS GSE85871 dataset containing 212 samples and the hallmark gene set "h.all.v2023.1.Hs.symbols.gmt" were downloaded from the Gene Expression Omnibus (GEO) database and the Molecular Signatures Database (MSigDB) database, respectively. Principal component analysis (PCA) was applied to classify clusters showing similar gene expression pattern. Single sample gene set enrichment analysis (ssGSEA) was used to calculate the hallmark score for different drug treatment groups. The expressions of genes related to angiogenesis, glycolysis and cell cycle were detected. Protein-protein interaction (PPI) network analysis was performed to study the interaction of the hub genes. Then, HERB database was employed to identify potential target genes for Narclasine and Bruceine D. Finally, in vitro experiments were conducted to validate partial drug-target pair. RESULTS PCA analysis showed that the significant changes in gene expression patterns took place in 6 drugs treatment groups (Narciclasine, Bruceine D, Japonicone A, 1beta-hydroxyalatolactone, Britanin, and four mixture drugs) in comparison to the remaining drug treatment groups. The ssGSEA pathway enrichment analysis demonstrated that Narciclasine and Bruceine treatments had similar enriched pathways, for instance, suppressed pathways related to angiogenesis, Glycolysis, and cell cycle, etc.. Further gene expression analysis confirmed that Narciclasine and Bruceine had a strong ability to inhibit these cell cycle genes, and that MYC, CHEK2, MELK, CDK4 and EZH2 were closely interacted with each other in the PPI analysis. Drug target prediction revealed that Androgen Receptor (AR) and Estrogen Receptor 1 (ESR1) were the targets for Bruceine D, and Cytochrome P450 3A4 enzyme (CYP3A4) was the target for Narciclasine. Cell experiments also confirmed the connections between Narciclasine and CYP3A4. CONCLUSION The present study uncovered that Narciclasine and Bruceine D could inhibit the growth of breast cancer and also predicted the potential targets for these two drugs, providing a new therapeutic direction for breast cancer patients.
Collapse
Affiliation(s)
- Xinhao Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hua Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Lin SS, Chang TM, Wei AIC, Lee CW, Lin ZC, Chiang YC, Chi MC, Liu JF. Acetylshikonin induces necroptosis via the RIPK1/RIPK3-dependent pathway in lung cancer. Aging (Albany NY) 2023; 15:14900-14914. [PMID: 38126996 PMCID: PMC10781480 DOI: 10.18632/aging.205316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.
Collapse
Affiliation(s)
- Shih-Sen Lin
- Division of Chest Medicine, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Tsung-Ming Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Augusta I-Chin Wei
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City 613016, Taiwan
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
| | - Miao-Ching Chi
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Ju-Fang Liu
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
6
|
Zhang Y, Zhang J, Li M, Qiao Y, Wang W, Ma L, Liu K. Target discovery of bioactive natural products with native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB): Applications, mechanisms and outlooks. Bioorg Med Chem 2023; 96:117483. [PMID: 37951136 DOI: 10.1016/j.bmc.2023.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/13/2023]
Abstract
Natural products (NPs) represent a treasure trove for drug discovery and development due to their chemical structural diversity and a broad spectrum of biological activities. Uncovering the biological targets and understanding their molecular mechanism of actions are crucial steps in the development of clinical therapeutics. However, the structural complexity of NPs and intricate nature of biological system present formidable challenges in target identification of NPs. Although significant advances have been made in the development of new chemical tools, these methods often require high levels of synthetic skills for preparing chemical probes. This can be costly and time-consuming relaying on operationally complicated procedures and instruments. In recent efforts, we and others have successfully developed an operationally simple and practical chemical tool known as native-compound-coupled CNBr-activated Sepharose 4B beads (NCCB) for NP target identification. In this approach, a native compound readily reacts with commercial CNBr-activated Sepharose 4B beads with a process that is easily performed in any biology laboratory. Based on NCCB, our group has identified the direct targets of more than 60 NPs. In this review, we will elucidate the application scopes, including flavonoids, quinones, terpenoids and others, characteristics, chemical mechanisms, procedures, advantages, disadvantages, and future directions of NCCB in specific target discovery.
Collapse
Affiliation(s)
- Yueteng Zhang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junjie Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglong Li
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Wang
- Departments of Pharmacology & Toxicology and Chemistry & Biochemistry, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Lu Ma
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
7
|
Ge S, Lian W, Bai Y, Wang L, Zhao F, Li H, Wang D, Pang Q. TMT-based quantitative proteomics reveals the targets of andrographolide on LPS-induced liver injury. BMC Vet Res 2023; 19:199. [PMID: 37817228 PMCID: PMC10563216 DOI: 10.1186/s12917-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Andrographolide (Andro) is a diterpenoid derived from Andrographis paniculate, which has anti-inflammatory, antibacterial, antiviral and hepatoprotective activities. Gram-negative bacterial infections can cause varying degrees of liver injury in chickens, although Andro has been shown to have a protective effect on the liver, its underlying mechanism of action and effects on liver proteins are not known. METHODS The toxicity of Andro on the viability of leghorn male hepatoma (LMH) cells at different concentrations and times was analyzed by CCK-8 assays. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the culture supernatants were measured using an automatic biochemical analyzer to evaluate the protective effect of androscopolide on LPS-induced injury of LMH cells. Subsequently, TMT proteomics analysis were performed on the negative control group (NC group), LPS, and LPS-Andro groups, and bioinformatics analysis was performed on the differentially expressed proteins (DEPs). RESULTS It was found that Andro reduced ALT and AST levels in the cell supernatant and alleviated LPS-induced injury in LMH cells. Proteomic analysis identified 50 and 166 differentially expressed proteins in the LPS vs. NC group and LPS-Andro vs. LPS group, respectively. Andro may be involved in steroid metabolic processes, negative regulation of MAPK cascade, oxidative stress, and other processes to protect against LPS-induced liver injury. CONCLUSIONS Andro protects against LPS-induced liver injury, HMGCS1, HMGCR, FDPS, PBK, CAV1, PRDX1, PRDX4, and PRDX6, which were identified by differential proteomics, may be the targets of Andro. Our study may provide new theoretical support for Andro protection against liver injury.
Collapse
Affiliation(s)
- Shihao Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Wenqi Lian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongjiang Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shangdong, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Houmei Li
- Shuozhou grass and animal husbandry development center, ShuoZhou, 036000, Shanxi, China
| | - Dongliang Wang
- ShuoZhou Vocational Technology College, ShuoZhou, 036000, Shanxi, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
8
|
Zhao S, Cui J, Cao L, Han K, Ma X, Chen H, Yin S, Zhao C, Ma C, Hu H. Xanthohumol inhibits non-small cell lung cancer via directly targeting T-lymphokine-activated killer cell-originated protein kinase. Phytother Res 2023. [PMID: 36882184 DOI: 10.1002/ptr.7799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
Xanthohumol is a principal prenylated chalcone isolated from hops. Previous studies have shown that xanthohumol was effective against various types of cancer, but the mechanisms, especially the direct targets for xanthohumol to exert an anticancer effect, remain elusive. Overexpression of T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes tumorigenesis, invasion and metastasis, implying the likely potential for targeting TOPK in cancer prevention and treatment. In the present study, we found that xanthohumol significantly inhibited the cell proliferation, migration and invasion of non-small cell lung cancer (NSCLC) in vitro and suppressed tumor growth in vivo, which is well correlated with inactivating TOPK, evidenced by reduced phosphorylation of TOPK and its downstream signaling histone H3 and Akt, and decreased its kinase activity. Moreover, molecular docking and biomolecular interaction analysis showed that xanthohumol was able to directly bind to the TOPK protein, suggesting that TOPK inactivation by xanthohumol is attributed to its ability to directly interact with TOPK. The findings of the present study identified TOPK as a direct target for xanthohumol to exert its anticancer activity, revealing novel insight into the mechanisms underlying the anticancer activity of xanthohumol.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jinling Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lixing Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu X, Jiang Y, Zhou H, Zhao X, Li M, Bao Z, Wang Z, Zhang C, Xie Z, Zhao J, Dong Z, Liu K, Guo Z. Dasabuvir suppresses esophageal squamous cell carcinoma growth in vitro and in vivo through targeting ROCK1. Cell Death Dis 2023; 14:118. [PMID: 36781836 PMCID: PMC9924867 DOI: 10.1038/s41419-023-05633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an upper gastrointestinal cancer with high morbidity and mortality. New strategies are urgently needed to prolong patients' survival. Through screening FDA-approved drugs, we found dasabuvir, a drug approved for hepatitis C virus (HCV) treatment, suppressed ESCC proliferation. Dasabuvir could inhibit the growth of ESCC cells in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was further validated in vivo using patient-derived xenograft tumor models. In terms of mechanism, we unveil that dasabuvir is a Rho-associated protein kinase 1 (ROCK1) inhibitor. Dasabuvir can bind to ROCK1 and suppress its kinase activity, thus downregulating the phosphorylation of ERK1/2 by ROCK1 and the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These results provide evidence that dasabuvir suppresses ESCC growth in vivo and in vitro through blocking ROCK1/ERK signaling pathway.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
| | - Hao Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Xiaokun Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Mingzhu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Zhuo Bao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Zitong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenyang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenliang Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China.
- Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, China.
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, China.
| | - Zhiping Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China.
- Fuwai Central China Cardiovascular Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Wang X, He Z, Yang H, He C, Wang C, Fazal A, Lai X, Yang L, Wen Z, Yang M, Ma S, Jie W, Cai J, Yin T, Liu B, Yang Y, Qi J. Genome-Wide Identification of LeBAHDs in Lithospermum erythrorhizon and In Vivo Transgenic Studies Confirm the Critical Roles of LeBAHD1/LeSAT1 in the Conversion of Shikonin to Acetylshikonin. Life (Basel) 2022; 12:life12111775. [PMID: 36362930 PMCID: PMC9694994 DOI: 10.3390/life12111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
The BAHD acyltransferase family is a unique class of plant proteins that acylates plant metabolites and participates in plant secondary metabolic processes. However, the BAHD members in Lithospermum erythrorhizon remain unknown and uncharacterized. Although the heterologously expressed L. erythrorhizon BAHD family member LeSAT1 in Escherichia coli has been shown to catalyze the conversion of shikonin to acetylshikonin in vitro, its in vivo role remains unknown. In this study, the characterization, evolution, expression patterns, and gene function of LeBAHDs in L. erythrorhizon were explored by bioinformatics and transgenic analysis. We totally identified 73 LeBAHDs in the reference genome of L. erythrorhizon. All LeBAHDs were phylogenetically classified into five clades likely to perform different functions, and were mainly expanded by dispersed and WGD/segmental duplication. The in vivo functional investigation of the key member LeBAHD1/LeSAT1 revealed that overexpression of LeBAHD1 in hairy roots significantly increased the content of acetylshikonin as well as the conversion rate of shikonin to acetylshikonin, whereas the CRISPR/Cas9-based knockout of LeBAHD1 in hairy roots displayed the opposite trend. Our results not only confirm the in vivo function of LeBAHD1/LeSAT1 in the biosynthesis of acetylshikonin, but also provide new insights for the biosynthetic pathway of shikonin and its derivatives.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuoyu He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Huan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Cong He
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Changyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaohui Lai
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liangjie Yang
- Yili Key Laboratory of Applied Research and Development on Active Ingredients of Chinese Herbal Medicine, Yili National Agricultural Science and Technology Park at Xinjiang, Yili 835600, China
| | - Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shenglin Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wencai Jie
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.Y.); (J.Q.)
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (Y.Y.); (J.Q.)
| |
Collapse
|
11
|
Romanova N, Schelletter L, Hoffrogge R, Noll T. Hyperosmolality in CHO cell culture: effects on the proteome. Appl Microbiol Biotechnol 2022; 106:2569-2586. [PMID: 35312825 PMCID: PMC8990941 DOI: 10.1007/s00253-022-11861-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used host cell lines for therapeutic protein production. Exposure of these cells to highly concentrated feed solution during fed-batch cultivation can lead to a non-physiological increase in osmolality (> 300 mOsm/kg) that affects cell physiology, morphology, and proteome. As addressed in previous studies (and indeed, as recently addressed in our research), hyperosmolalities of up to 545 mOsm/kg force cells to abort proliferation and gradually increase their volume—almost tripling it. At the same time, CHO cells also show a significant hyperosmolality-dependent increase in mitochondrial activity. To gain deeper insight into the molecular mechanisms that are involved in these processes, as detailed in this paper, we performed a comparative quantitative label-free proteome study of hyperosmolality-exposed CHO cells compared with control cells. Our analysis revealed differentially expressed key proteins that mediate mitochondrial activation, oxidative stress amelioration, and cell cycle progression. Our studies also demonstrate a previously unknown effect: the strong regulation of proteins can alter both cell membrane stiffness and permeability. For example, we observed that three types of septins (filamentous proteins that form diffusion barriers in the cell) became strongly up-regulated in response to hyperosmolality in the experimental setup. Overall, these new observations correlate well with recent CHO-based fluxome and transcriptome studies, and reveal additional unknown proteins involved in the response to hyperosmotic pressure by over-concentrated feed in mammalian cells. Key points • First-time comparative proteome analysis of CHO cells exposed to over-concentrated feed. • Discovery of membrane barrier-forming proteins up-regulation under hyperosmolality. • Description of mitochondrial and protein chaperones activation in treated cells.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Louise Schelletter
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Noll
- Cell Culture Technology, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.
| |
Collapse
|
12
|
Lim HM, Lee J, Yu SH, Nam MJ, Cha HS, Park K, Yang YH, Jang KY, Park SH. Acetylshikonin, A Novel CYP2J2 Inhibitor, Induces Apoptosis in RCC Cells via FOXO3 Activation and ROS Elevation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9139338. [PMID: 35308176 PMCID: PMC8926475 DOI: 10.1155/2022/9139338] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 01/04/2023]
Abstract
Acetylshikonin is a shikonin derivative originated from Lithospermum erythrorhizon roots that exhibits various biological activities, including granulation tissue formation, promotion of inflammatory effects, and inhibition of angiogenesis. The anticancer effect of acetylshikonin was also investigated in several cancer cells; however, the effect against renal cell carcinoma (RCC) have not yet been studied. In this study, we aimed to investigate the anticarcinogenic mechanism of acetylshikonin in A498 and ACHN, human RCC cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), cell counting, and colony forming assay showed that acetylshikonin induced cytotoxic and antiproliferative effects in a dose- and time-dependent manner. Cell cycle analysis and annexin V/propidium iodide (PI) double staining assay indicated the increase of subG1 phase and apoptotic rates. Also, DNA fragmentation was observed by using the TUNEL and comet assays. The intracellular ROS level in acetylshikonin-treated RCC was evaluated using DCF-DA. The ROS level was increased and cell viability was decreased in a dose- and time-dependent manner, while those were recovered when cotreated with NAC. Western blotting analysis showed that acetylshikonin treatment increased the expression of FOXO3, cleaved PARP, cleaved caspase-3, -6, -7, -8, -9, γH2AX, Bim, Bax, p21, and p27 while decreased the expressions of CYP2J2, peroxiredoxin, and thioredoxin-1, Bcl-2, and Bcl-xL. Simultaneously, nuclear translocation of FOXO3 and p27 was observed in cytoplasmic and nuclear fractionated western blot analysis. Acetylshikonin was formerly identified as a novel inhibitor of CYP2J2 protein in our previous study and it was evaluated that CYP2J2 was downregulated in acetylshikonin-treated RCC. CYP2J2 siRNA transfection augmented that apoptotic effect of acetylshikonin in A498 and ACHN via up-regulation of FOXO3 expression. In conclusion, we showed that the apoptotic potential of acetylshikonin against RCC is mediated via increase of intracellular ROS level, activation of FOXO3, and inhibition of CYP2J2 expressions. This study offers that acetylshikonin may be a considerable alternative therapeutic option for RCC treatment by targeting FOXO3 and CYP2J2.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon Hak Yu
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Myeong Jin Nam
- Department of Biological Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyo Sun Cha
- Department of Biological Science, Gachon University, Seongnam 13120, Republic of Korea
| | - Kyungmoon Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju 54896, Republic of Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
13
|
Cui J, Guo R, Wang Y, Song Y, Song X, Li H, Song X, Li J. Acetylshikonin suppresses diffuse large B-Cell Lymphoma cell growth by targeting the T-lymphokine-activated killer cell-originated protein kinase signalling pathway. Bioengineered 2022; 13:4428-4440. [PMID: 35139768 PMCID: PMC8973784 DOI: 10.1080/21655979.2022.2034584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most common causes of cancer death worldwide, and responds poorly to the existing treatments. Thus, identifying novel therapeutic targets of DLBCL is urgently needed. In this study, we found that T-lymphokine-activated killer cell-originated protein kinase (TOPK) was highly expressed in DLBCL cells and tissues. Data from the GEPIA database also indicated that TOPK was highly expressed in DLBCL tissues. The high expression levels of proteins were identified via Western blots and immunohistochemistry (IHC). TOPK knockdown inhibited cell growth and induced apoptosis of DLBCL cells with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium (MTS) and flow cytometry. Further experiments demonstrated that acetylshikonin, a compound that targeted TOPK, could attenuate cell growth and aggravate cell apoptosis through TOPK/extracellular signal-regulated kinase (ERK)-1/2 signaling, as shown by MTS, flow cytometry and Western blots. In addition, we demonstrated that TOPK modulated the effect of acetylshikonin on cell proliferation and apoptosis in U2932 and OCI-LY8 cells using MTS, flow cytometry and Western blots. Taken together, the present study suggests that acetylshikonin suppresses the growth of DLBCL cells by attenuating TOPK signaling, and the targeted inhibition of TOPK by acetylshikonin may be a promising approach for the treatment of DLBCL.
Collapse
Affiliation(s)
- Jieke Cui
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjun Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuewen Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqin Song
- Depatment of Physical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiwei Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Wu MD, Zhang YY, Yi SY, Sun BB, Lan J, Jiang HM, Hao GP. Acetylshikonin induces autophagy-dependent apoptosis through the key LKB1-AMPK and PI3K/Akt-regulated mTOR signalling pathways in HL-60 cells. J Cell Mol Med 2022; 26:1606-1620. [PMID: 35106915 PMCID: PMC8899184 DOI: 10.1111/jcmm.17202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.
Collapse
Affiliation(s)
- Meng-Di Wu
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan-Ying Zhang
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Shu-Ying Yi
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Bei-Bei Sun
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Lan
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Han-Ming Jiang
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| | - Gang-Ping Hao
- School of Basic Medical Sciences, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
15
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
16
|
Liu Y, Xiang J, Peng G, Shen C. Omics- and Pharmacogenomic Evidence for the Prognostic, Regulatory, and Immune-Related Roles of PBK in a Pan-Cancer Cohort. Front Mol Biosci 2021; 8:785370. [PMID: 34859058 PMCID: PMC8632063 DOI: 10.3389/fmolb.2021.785370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
PDZ-binding kinase (PBK) is known to regulate tumor progression in some cancer types. However, its relationship to immune cell infiltration and prognosis in different cancers is unclear. This was investigated in the present study by analyzing data from TCGA, GEO, GETx, TIMER, CPTAC, GEPIA2, cBioPortal, GSCALite, PROGNOSCAN, PharmacoDB, STRING, and ENCORI databases. PBK was overexpressed in most tumors including adenocortical carcinoma (hazard ratio [HR] = 2.178, p < 0.001), kidney renal clear cell carcinoma (KIRC; HR = 1.907, p < 0.001), kidney renal papillary cell carcinoma (HR = 3.024, p < 0.001), and lung adenocarcinoma (HR = 1.255, p < 0.001), in which it was associated with poor overall survival and advanced pathologic stage. PBK methylation level was a prognostic marker in thyroid carcinoma (THCA). PBK expression was positively correlated with the levels of BIRC5, CCNB1, CDC20, CDK1, DLGAP5, MAD2L1, MELK, PLK1, TOP2A, and TTK in 32 tumor types; and with the levels of the transcription factors E2F1 and MYC, which regulate apoptosis, the cell cycle, cell proliferation and invasion, tumorigenesis, and metastasis. It was also negatively regulated by the microRNAs hsa-miR-101-5p, hsa-miR-145-5p, and hsa-miR-5694. PBK expression in KIRC, liver hepatocellular carcinoma, THCA, and thymoma was positively correlated with the infiltration of immune cells including B cells, CD4+T cells, CD8+ T cells, macrophages, monocytes, and neutrophils. The results of the functional enrichment analysis suggested that PBK and related genes contribute to tumor development via cell cycle regulation. We also identified 20 drugs that potentially inhibit PBK expression. Thus, PBK is associated with survival outcome in a variety of cancers and may promote tumor development and progression by increasing immune cell infiltration into the tumor microenvironment. These findings indicate that PBK is a potential therapeutic target and has prognostic value in cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Xiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Zhang H, Yi JK, Huang H, Park S, Kwon W, Kim E, Jang S, Kim SY, Choi SK, Yoon D, Kim SH, Liu K, Dong Z, Ryoo ZY, Kim MO. 20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo. J Ginseng Res 2021; 46:396-407. [PMID: 35600769 PMCID: PMC9120647 DOI: 10.1016/j.jgr.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju, Republic of Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
| | - Seong-kyoon Choi
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Republic of Korea
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch, Kyungpook National University, Daegu, Republic of Korea
- Corresponding author.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Republic of Korea
- Corresponding author. Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, Gyeongsangbukdo, 37224, Republic of Korea.
| |
Collapse
|
18
|
Wang XS, Yang JM, Ding RJ, Liu XZ, Jiang XB, Yang ZJ, Ling ZM, Hu TX, Wei FX. Fabrication of a Polylactide-Glycolide/Poly-ε-Caprolactone/Dextran/Plastrum Testudinis Extract Composite Anti-Inflammation Nanofiber Membrane via Electrospinning for Annulus Fibrosus Regeneration. J Biomed Nanotechnol 2021; 17:873-888. [PMID: 34082873 DOI: 10.1166/jbn.2021.3070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tissue engineering is a promising approach for the treatment of chronic lower back pain (LBP) caused by intervertebral disc degeneration (IDD) resulting from degeneration and inflammation of annulus fibrosus (AF) tissue. However, scaffold with an anti-inflammatory effect on AF cells has not been reported. In this study, we fabricated a polylactide-glycolide (PLGA)/poly-ε-caprolactone (PCL)Zdextran (DEX) composite membrane loaded with plastrum testudinis extract (PTE), a Traditional Chinese Medicine herbal extract, via electrospinning. The membranes were characterized by mechanical measurements and scanning electron microscopy (SEM). Using an in vitro inflammation model induced by interleukin (IL)-1β, the cytocompatibility and anti-inflammatory effects of the composites were investigated by CCK-8 assay and flow cytometry. Potential regulatory mechanisms were examined by RT-qPCR and Western blotting. The results showed that the P10P8D2 (PLGA 10 g, PCL 8 g, DEX 2 g) composite nanofiber membrane exhibited the most uniform diameter distribution, best mechanical properties, a moderate degradation rate, and the best cytocompatibility characteristics. The optimal concentration of PTE was 120 µg/mL. Importantly, P10P8D2 combined with PTE exhibited anti-inflammatory and cell proliferation promotion effects. Moreover, the NF-κBB/NLRP3/IL-β signaling pathway was inactivated. Our findings suggested that the nanofiber membrane composed of P10P8D2 and PTE has anti-inflammatory and pro-proliferation effects on AF cells. It may provide an effective strategy for AF tissue regeneration.
Collapse
Affiliation(s)
- Xiao-Shuai Wang
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jia-Ming Yang
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Ren-Jie Ding
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510030, P. R. China
| | - Xi-Zhe Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510030, P. R. China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology Orthopaedic Research Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510030, P. R. China
| | - Xiao-Bing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510080, P. R. China
| | - Zhi-Jian Yang
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510030, P. R. China
| | - Ze-Min Ling
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510030, P. R. China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology Orthopaedic Research Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510030, P. R. China
| | - Tian-Xue Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510030, P. R. China
| | - Fu-Xin Wei
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
19
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
20
|
Zhang H, Yi JK, Huang H, Park S, Park S, Kwon W, Kim E, Jang S, Kim SY, Choi SK, Kim SH, Liu K, Dong Z, Ryoo ZY, Kim MO. Rhein Suppresses Colorectal Cancer Cell Growth by Inhibiting the mTOR Pathway In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13092176. [PMID: 33946531 PMCID: PMC8125196 DOI: 10.3390/cancers13092176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Rhein has demonstrated therapeutic effects in various cancer models. However, its effects and underlying mechanisms of action in CRC remain poorly understood. We investigated the potential anticancer activity and underlying mechanisms of rhein in CRC in vitro and in vivo. Cell viability and anchorage-independent colony formation assays were performed to examine the antigrowth effects of rhein on CRC cells. Wound-healing and Transwell assays were conducted to assess cell migration and invasion capacity. Cell cycle and apoptosis were investigated by flow cytometry and verified by immunoblotting. A tissue microarray was used to detect mTOR expression in CRC patient tissues. Gene overexpression and knockdown were done to analyze the function of mTOR in CRC. The anticancer effect of rhein in vivo was assessed in a CRC xenograft mouse model. The results show that rhein significantly inhibited CRC cell growth by inducing S-phase cell cycle arrest and apoptosis. Rhein inhibited CRC cell migration and invasion through the epithelial-mesenchymal transition (EMT) process. mTOR was highly expressed in CRC cancer tissues and cells. Overexpression of mTOR promoted cell growth, migration, and invasion, whereas mTOR knockdown diminished these phenomena in CRC cells in vitro. In addition, rhein directly targeted mTOR and inhibited the mTOR signaling pathway in CRC cells. Rhein promoted mTOR degradation through the ubiquitin-proteasome pathway. Intraperitoneal administration of rhein inhibited HCT116 xenograft tumor growth through the mTOR pathway. In conclusion, rhein exerts anticancer activity in vitro and in vivo by targeting mTOR and inhibiting the mTOR signaling pathway in CRC. Our results indicate that rhein is a potent anticancer agent that may be useful for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
| | - Jun-Koo Yi
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Korea;
| | - Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu 41566, Korea; (S.P.); (S.-K.C.)
- Department of Brain and Cognitive Science, DGIST, Daegu 41566, Korea
| | - Sijun Park
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu 41566, Korea;
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
| | - Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
| | - Si-Yong Kim
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu 41566, Korea; (S.P.); (S.-K.C.)
- Division of Biotechnology, DGIST, Daegu 41566, Korea;
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam 34134, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu 41566, Korea; (S.P.); (S.J.); (S.-Y.K.)
- Correspondence: (Z.Y.R.); (M.O.K.); Tel.: +82-53-950-7361 (Z.Y.R.); +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea; (H.Z.); (H.H.); (E.K.)
- Correspondence: (Z.Y.R.); (M.O.K.); Tel.: +82-53-950-7361 (Z.Y.R.); +82-54-530-1234 (M.O.K.)
| |
Collapse
|
21
|
Fu X, Zhao R, Yoon G, Shim JH, Choi BY, Yin F, Xu B, Laster KV, Liu K, Dong Z, Lee MH. 3-Deoxysappanchalcone Inhibits Skin Cancer Proliferation by Regulating T-Lymphokine-Activated Killer Cell-Originated Protein Kinase in vitro and in vivo. Front Cell Dev Biol 2021; 9:638174. [PMID: 33842463 PMCID: PMC8027363 DOI: 10.3389/fcell.2021.638174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Skin cancer is one of the most commonly diagnosed cancers worldwide. The 5-year survival rate of the most aggressive late-stage skin cancer ranges between 20 and 30%. Thus, the discovery and investigation of novel target therapeutic agents that can effectively treat skin cancer is of the utmost importance. The T-lymphokine-activated killer cell-originated protein kinase (TOPK), which belongs to the serine-threonine kinase class of the mitogen-activated protein kinase kinase (MAPKK) family, is highly expressed and activated in skin cancer. The present study investigates the role of 3-deoxysappanchalcone (3-DSC), a plant-derived functional TOPK inhibitor, in suppressing skin cancer cell growth. Purpose In the context of skin cancer prevention and therapy, we clarify the effect and mechanism of 3-DSC on different types of skin cancer and solar-simulated light (SSL)-induced skin hyperplasia. Methods In an in vitro study, western blotting and in vitro kinase assays were utilized to determine the protein expression of TOPK and its activity, respectively. Pull-down assay with 3-DSC and TOPK (wild-type and T42A/N172 mutation) was performed to confirm the direct interaction between T42A/N172 amino acid sites of TOPK and 3-DSC. Cell proliferation and anchorage-independent cell growth assays were utilized to determine the effect of 3-DSC on cell growth. In an in vivo study, the thickness of skin and tumor size were measured in the acute SSL-induced inflammation mouse model or SK-MEL-2 cell-derived xenografts mouse model treated with 3-DSC. Immunohistochemistry analysis of tumors isolated from SK-MEL-2 cell-derived xenografts was performed to determine whether cell-based results observed upon 3-DSC treatment could be recapitulated in vivo. Results 3-DSC is able to inhibit cell proliferation in skin cancer cells in an anchorage-dependent and anchorage-independent manner by regulation of TOPK and its related signaling pathway in vitro. We also found that application of 3-DSC reduced acute SSL-induced murine skin hyperplasia. Additionally, we observed that 3-DSC decreased SK-MEL-2 cell-derived xenograft tumor growth through attenuating phosphorylation of TOPK and its downstream effectors including ERK, RSK, and c-Jun. Conclusions Our results suggest that 3-DSC may function in a chemopreventive and chemotherapeutic capacity by protecting against UV-induced skin hyperplasia and inhibiting tumor cell growth by attenuating TOPK signaling, respectively.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, South Korea
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
22
|
Zhao R, Choi BY, Wei L, Fredimoses M, Yin F, Fu X, Chen H, Liu K, Kundu JK, Dong Z, Lee MH. Acetylshikonin suppressed growth of colorectal tumour tissue and cells by inhibiting the intracellular kinase, T-lymphokine-activated killer cell-originated protein kinase. Br J Pharmacol 2020; 177:2303-2319. [PMID: 31985814 PMCID: PMC7174886 DOI: 10.1111/bph.14981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Overexpression or aberrant activation of the T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes gene expression and growth of solid tumours, implying that TOPK would be a rational target in developing novel anticancer drugs. Acetylshikonin, a diterpenoid compound isolated from Lithospermum erythrorhizon root, exerts a range of biological activities. Here we have investigated whether acetylshikonin, by acting as an inhibitor of TOPK, can attenuate the proliferation of colorectal cancer cells and the growth of patient-derived tumours, in vitro and in vivo. EXPERIMENTAL APPROACH Targets of acetylshikonin, were identified using kinase profiling analysis, kinetic/binding assay, and computational docking analysis and knock-down techniques. Effects of acetylshikonin on colorectal cancer growth and the underlying mechanisms were evaluated in cell proliferation assays, propidium iodide and annexin-V staining analyses and western blots. Patient-derived tumour xenografts in mice (PDX) and immunohistochemistry were used to assess anti-tumour effects of acetylshikonin. KEY RESULTS Acetylshikonin directly inhibited TOPK activity, interacting with the ATP-binding pocket of TOPK. Acetylshikonin suppressed cell proliferation by inducing cell cycle arrest at the G1 phase, stimulated apoptosis, and increased the expression of apoptotic biomarkers in colorectal cancer cell lines. Mechanistically, acetylshikonin diminished the phosphorylation and activation of TOPK signalling. Furthermore, acetylshikonin decreased the volume of PDX tumours and reduced the expression of TOPK signalling pathway in xenograft tumours. CONCLUSION AND IMPLICATIONS Acetylshikonin suppressed growth of colorectal cancer cells by attenuating TOPK signalling. Targeted inhibition of TOPK by acetylshikonin might be a promising new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, South Korea
| | - Lixiao Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|