1
|
Faircloth TU, Temple S, Parr RN, Tucker AB, Rajan D, Hematti P, Kugathasan S, Chinnadurai R. Vascular endothelial growth factor secretion and immunosuppression are distinct potency mechanisms of human bone marrow mesenchymal stromal cells. Stem Cells 2024; 42:736-751. [PMID: 38826008 DOI: 10.1093/stmcls/sxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Mesenchymal stromal cells (MSCs) are investigated as cellular therapeutics for inflammatory bowel diseases and associated perianal fistula, although consistent efficacy remains a concern. Determining host factors that modulate MSCs' potency including their secretion of angiogenic and wound-healing factors, immunosuppression, and anti-inflammatory properties are important determinants of their functionality. We investigated the mechanisms that regulate the secretion of angiogenic and wound-healing factors and immune suppression of human bone marrow MSCs. Secretory analysis of MSCs focusing on 18 angiogenic and wound-healing secretory molecules identified the most abundancy of vascular endothelial growth factor A (VEGF-A). MSC viability and secretion of other angiogenic factors are not dependent on VEGF-A secretion which exclude the autocrine role of VEGF-A on MSC's fitness. However, the combination of inflammatory cytokines IFNγ and TNFα reduces MSC's VEGF-A secretion. To identify the effect of intestinal microvasculature on MSCs' potency, coculture analysis was performed between human large intestine microvascular endothelial cells (HLMVECs) and human bone marrow-derived MSCs. HLMVECs do not attenuate MSCs' viability despite blocking their VEGF-A secretion. In addition, HLMVECs neither attenuate MSC's IFNγ mediated upregulation of immunosuppressive enzyme indoleamine 2,3-dioxygenase nor abrogate suppression of T-cell proliferation despite the attenuation of VEGF-A secretion. We found that HLMVECs express copious amounts of endothelial nitric oxide synthase and mechanistic analysis showed that pharmacological blocking reverses HLMVEC-mediated attenuation of MSC's VEGF-A secretion. Together these results suggest that secretion of VEGF-A and immunosuppression are separable functions of MSCs which are regulated by distinct mechanisms in the host.
Collapse
Affiliation(s)
- Tyler U Faircloth
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Sara Temple
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Rhett N Parr
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Anna B Tucker
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Devi Rajan
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31324, United States
| |
Collapse
|
2
|
Cappuzzello E, Vigolo E, D’Accardio G, Astori G, Rosato A, Sommaggio R. How can Cytokine-induced killer cells overcome CAR-T cell limits. Front Immunol 2023; 14:1229540. [PMID: 37675107 PMCID: PMC10477668 DOI: 10.3389/fimmu.2023.1229540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
The successful treatment of patients affected by B-cell malignancies with Chimeric Antigen Receptor (CAR)-T cells represented a breakthrough in the field of adoptive cell therapy (ACT). However, CAR-T therapy is not an option for every patient, and several needs remain unmet. In particular, the production of CAR-T cells is expensive, labor-intensive and logistically challenging; additionally, the toxicities deriving from CAR-T cells infusion, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), have been documented extensively. Alternative cellular therapy products such as Cytokine-induced killer (CIK) cells have the potential to overcome some of these obstacles. CIK cells are a heterogeneous population of polyclonal CD3+CD56+ T cells with phenotypic and functional properties of NK cells. CIK cell cytotoxicity is exerted in a major histocompatibility complex (MHC)-unrestricted manner through the engagement of natural killer group 2 member D (NKG2D) molecules, against a wide range of hematological and solid tumors without the need for prior antigen exposure or priming. The foremost potential of CIK cells lies in the very limited ability to induce graft-versus-host disease (GvHD) reactions in the allogeneic setting. CIK cells are produced with a simple and extremely efficient expansion protocol, which leads to a massive expansion of effector cells and requires a lower financial commitment compared to CAR-T cells. Indeed, CAR-T manufacturing involves the engineering with expensive GMP-grade viral vectors in centralized manufacturing facilities, whereas CIK cell production is successfully performed in local academic GMP facilities, and CIK cell treatment is now licensed in many countries. Moreover, the toxicities observed for CAR-T cells are not present in CIK cell-treated patients, thus further reducing the costs associated with hospitalization and post-infusion monitoring of patients, and ultimately encouraging the delivery of cell therapies in the outpatient setting. This review aims to give an overview of the limitations of CAR-T cell therapy and outline how the use of CIK cells could overcome such drawbacks thanks to their unique features. We highlight the undeniable advantages of using CIK cells as a therapeutic product, underlying the opportunity for further research on the topic.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Vigolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Giulia D’Accardio
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Hematology, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Roberta Sommaggio
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
4
|
Licochalcone A Promotes the Ubiquitination of c-Met to Abrogate Gefitinib Resistance. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5687832. [PMID: 35309168 PMCID: PMC8930240 DOI: 10.1155/2022/5687832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Met proto-oncogene (MET) amplification and tyrosine-protein kinase Met (c-Met) overexpression confer gefitinib resistance in non-small cell lung cancer (NSCLC). The natural product Licochalcone A (Lico A) exhibits a broad range of inhibitory effects against various tumors. However, the effects of Lico A on c-Met signaling and gefitinib resistance in NSCLC remain unclear. In the present study, Lico A efficiently overcame gefitinib-acquired resistance in NSCLC cells by suppressing c-Met signaling. Lico A decreased cell viability and colony formation dose-dependently and impaired in vivo tumorigenesis of gefitinib-resistant HCC827 and PC-9 cells. Furthermore, Lico A induced intrinsic apoptosis and upregulated the protein expression levels of cleaved poly (ADP-ribose) polymerase and cleaved caspase 3. Lico A promoted the interaction between c-Met and E3 ligase c-Casitas B-lineage lymphoma (Cbl), which enhanced c-Cbl-mediated c-Met ubiquitination and degradation. Depletion of c-Cbl compromised Lico A-induced c-Met ubiquitination and its inhibitory efficacy in gefitinib-resistant NSCLC cells. Taken together, the results suggest that Lico A is a promising antitumor agent that might be used to overcome c-Met overexpression-mediated gefitinib resistance in NSCLC cells.
Collapse
|
5
|
Dalla Pietà A, Cappuzzello E, Palmerini P, Ventura A, Visentin A, Astori G, Chieregato K, Mozzo V, Perbellini O, Tisi MC, Trentin L, Visco C, Ruggeri M, Sommaggio R, Rosato A. Innovative therapeutic strategy for B-cell malignancies that combines obinutuzumab and cytokine-induced killer cells. J Immunother Cancer 2021; 9:jitc-2021-002475. [PMID: 34272306 PMCID: PMC8287629 DOI: 10.1136/jitc-2021-002475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background Patients affected by aggressive B-cell malignancies who are resistant to primary or salvage chemoimmunotherapy have an extremely poor prognosis and limited therapeutic options. Promising therapeutic success has been achieved with the infusion of CD19 chimeric antigen receptor-T cells, but several limits still restrain the administration to a limited proportion of patients. This unmet clinical need might be fulfilled by an adoptive immunotherapy approach that combines cytokine-induced killer (CIK) cells and monoclonal antibodies (mAb) to the CD20 antigen. Indeed, CIK cells are an effector population endowed with antitumor activity, which can be further improved and antigen-specifically redirected by clinical-grade mAb triggering antibody-dependent cell-mediated cytotoxicity. Methods CIK cells were generated from peripheral blood of patients affected by different B-cell malignancies using a blinatumomab-based cell culture protocol. Effector cells were combined with the anti-CD20 mAb obinutuzumab and their therapeutic activity was assessed both in vitro and in vivo. Results CIK cells were successfully expanded in clinically relevant numbers, starting from small volumes of peripheral blood with extremely low CD3+ counts and high tumor burden. This relied on the addition of blinatumumab in culture, which leads to the simultaneous expansion of effector cells and the complete elimination of the neoplastic component. Moreover, CIK cells were highly cytotoxic in vitro against both B-cell tumor cell lines and autologous neoplastic targets, and had a significant therapeutic efficacy against a B-cell malignancy patient-derived xenograft on in vivo transfer. Conclusions The combination of an easily expandable CIK cell effector population with a mAb already in clinical use establishes a tumor antigen-specific redirection strategy that can be rapidly translated into clinical practice, providing an effective therapeutic alternative for B-cell malignancies without any need for genetic modifications. Additionally, the approach can be potentially applied to an extremely vast array of different tumors by simply substituting the targeting mAb.
Collapse
Affiliation(s)
- Anna Dalla Pietà
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Elisa Cappuzzello
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Pierangela Palmerini
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Annavera Ventura
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Hematology, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Department of Hematology, San Bortolo Hospital of Vicenza, Vicenza, Italy.,Consorzio per la Ricerca Sanitaria (CORIS) of Veneto Region, Padova, Italy
| | | | - Omar Perbellini
- Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | | | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Marco Ruggeri
- Cell Therapy and Hematology, San Bortolo Hospital, Vicenza, Italy
| | | | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, Immunology and Oncology Section, University of Padua, Padova, Italy .,Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| |
Collapse
|