1
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
2
|
Yan YF, Feng Y, Wang SM, Fang F, Chen HY, Zhen MX, Ji YQ, Wu SD. Potential actions of capsaicin for preventing vascular calcification of vascular smooth muscle cells in vitro and in vivo. Heliyon 2024; 10:e28021. [PMID: 38524547 PMCID: PMC10958412 DOI: 10.1016/j.heliyon.2024.e28021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na2HPO4 and 50 μg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and β-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/β-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.
Collapse
Affiliation(s)
- Yin-Fang Yan
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yue Feng
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Si-Min Wang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Fei Fang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Hong-Yan Chen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Ming-Xia Zhen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yu-Qiang Ji
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Song-Di Wu
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Xie Y, Nishijima Y, Zinkevich NS, Korishettar A, Fang J, Mathison AJ, Zimmermann MT, Wilcox DA, Gutterman DD, Shen Y, Zhang DX. NADPH oxidase 4 contributes to TRPV4-mediated endothelium-dependent vasodilation in human arterioles by regulating protein phosphorylation of TRPV4 channels. Basic Res Cardiol 2022; 117:24. [PMID: 35469044 PMCID: PMC9119129 DOI: 10.1007/s00395-022-00932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Impaired endothelium-dependent vasodilation has been suggested to be a key component of coronary microvascular dysfunction (CMD). A better understanding of endothelial pathways involved in vasodilation in human arterioles may provide new insight into the mechanisms of CMD. The goal of this study is to investigate the role of TRPV4, NOX4, and their interaction in human arterioles and examine the underlying mechanisms. Arterioles were freshly isolated from adipose and heart tissues obtained from 71 patients without coronary artery disease, and vascular reactivity was studied by videomicroscopy. In human adipose arterioles (HAA), ACh-induced dilation was significantly reduced by TRPV4 inhibitor HC067047 and by NOX 1/4 inhibitor GKT137831, but GKT137831 did not further affect the dilation in the presence of TRPV4 inhibitors. GKT137831 also inhibited TRPV4 agonist GSK1016790A-induced dilation in HAA and human coronary arterioles (HCA). NOX4 transcripts and proteins were detected in endothelial cells of HAA and HCA. Using fura-2 imaging, GKT137831 significantly reduced GSK1016790A-induced Ca2+ influx in the primary culture of endothelial cells and TRPV4-WT-overexpressing human coronary artery endothelial cells (HCAEC). However, GKT137831 did not affect TRPV4-mediated Ca2+ influx in non-phosphorylatable TRPV4-S823A/S824A-overexpressing HCAEC. In addition, treatment of HCAEC with GKT137831 decreased the phosphorylation level of Ser824 in TRPV4. Finally, proximity ligation assay (PLA) revealed co-localization of NOX4 and TRPV4 proteins. In conclusion, both TRPV4 and NOX4 contribute to ACh-induced dilation in human arterioles from patients without coronary artery disease. NOX4 increases TRPV4 phosphorylation in endothelial cells, which in turn enhances TRPV4-mediated Ca2+ entry and subsequent endothelium-dependent dilation in human arterioles.
Collapse
Affiliation(s)
- Yangjing Xie
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.,Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yoshinori Nishijima
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Natalya S. Zinkevich
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Illinois at Springfield, Springfield, IL, USA
| | - Ankush Korishettar
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - Angela J. Mathison
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center (GSPMC), Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David A. Wilcox
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Children’s Research Institute, Children’s Wisconsin, Milwaukee, WI, USA
| | - David D. Gutterman
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.,Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.,Article correspondence to: David X. Zhang, Ph.D., Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA, Tel: (414) 955-5633, Fax: (414) 955-6572, And Yuxian Shen, Ph.D., School of Basic Medical Sciences and Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China, Tel: +86-551-6511-3776,
| | - David X. Zhang
- Cardiovascular Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Article correspondence to: David X. Zhang, Ph.D., Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA, Tel: (414) 955-5633, Fax: (414) 955-6572, And Yuxian Shen, Ph.D., School of Basic Medical Sciences and Biopharmaceutical Institute, Anhui Medical University, 81 Meishan Road, Hefei 230032, China, Tel: +86-551-6511-3776,
| |
Collapse
|
5
|
Reactive Oxygen Species Are Essential for Vasoconstriction upon Cold Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8578452. [PMID: 34868457 PMCID: PMC8635890 DOI: 10.1155/2021/8578452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022]
Abstract
Purpose We explored the role of ROS in cold-induced vasoconstriction and corresponding mechanism. Methods Three experiments were performed. First, we measured blood flow in human hands before and after cold exposure. Second, 24 mice were randomly divided into 3 groups: 8 mice received saline injection, 8 received subcutaneous Tempol injection, and 8 received intrathecal Tempol injection. After 30 min, we determined blood flow in the skin before and after cold exposure. Finally, we used Tempol, CCG-1423, and Go 6983 to pretreat HAVSMCs and HUVECs for 24 h. Then, cells in the corresponding groups were exposed to cold (6 h, 4°C). After cold exposure, the cytoskeleton was stained. Intracellular Ca2+ and ROS levels were measured by flow cytometry and fluorescence microscopy. We measured protein expression via Western blotting. Results In the first experiment, after cold exposure, maximum skin blood flow decreased to 118.4 ± 50.97 flux units. Then, Tempol or normal saline pretreatment did not change skin blood flow. Unlike intrathecal Tempol injection, subcutaneous Tempol injection increased skin blood flow after cold exposure. Finally, cold exposure for 6 h shrank the cells, making them narrower, and increased intracellular Ca2+ and ROS levels in HUVECs and HAVSMCs. Tempol reduced cell shrinkage and decreased intracellular Ca2+ levels. In addition, Tempol decreased intracellular ROS levels. Cold exposure increased RhoA, Rock1, p-MLC-2, ET-1, iNOS, and p-PKC expression and decreased eNOS expression. Tempol or CCG-1423 pretreatment decreased RhoA, Rock1, and p-MLC-2 levels in HAVSMCs. Furthermore, Tempol or Go 6983 pretreatment decreased ET-1, iNOS, and p-PKC expression and increased eNOS expression in HUVECs. Conclusion ROS mediate the vasoconstrictor response within the cold-induced vascular response, and ROS in blood vessel tissues rather than nerve fibers are involved in vasoconstriction via the ROS/RhoA/ROCK1 and ROS/PKC/ET-1 pathways in VSMCs and endothelial cells.
Collapse
|