1
|
Alkhammash A. Pharmacology of epitranscriptomic modifications: Decoding the therapeutic potential of RNA modifications in drug resistance. Eur J Pharmacol 2025; 994:177397. [PMID: 39978710 DOI: 10.1016/j.ejphar.2025.177397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
RNA modifications, collectively known as epitranscriptomic modifications, have emerged as critical regulators of gene expression, cellular adaptation, and therapeutic resistance. This review explores the pharmacological potential of targeting RNA modifications, including N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as strategies to overcome drug resistance in cancer. We examine key regulatory enzymes, writers, erasers, and readers-and their roles in modulating RNA stability, translation, and splicing. Advances in combination therapies, integrating RNA modification modulators with conventional chemotherapies and immune checkpoint inhibitors, have shown promising outcomes in reversing multidrug resistance (MDR). Emerging RNA-targeting technologies, such as CRISPR/Cas13 systems and advanced RNA sequencing platforms, further enable precision manipulation of RNA molecules, opening new therapeutic frontiers. However, several challenges persist, including issues related to pharmacokinetics, acquired resistance, and the complexity of epitranscriptomic networks. This review underscores the need for innovative delivery systems, such as lipid nanoparticles and tissue-specific targeting strategies, and highlights the dynamic nature of RNA modifications in response to environmental and therapeutic stress. Ongoing research into non-coding RNA modifications and the interplay between epitranscriptomics and epigenetics offers exciting possibilities for developing novel RNA-targeting therapies. The continued evolution of RNA-based technologies will be crucial in advancing precision medicine, addressing drug resistance, and improving clinical outcomes across multiple diseases.
Collapse
Affiliation(s)
- Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| |
Collapse
|
2
|
Penning A, Fuks F. The importance of physiological and disease contexts in capturing mRNA modifications. Nat Struct Mol Biol 2025; 32:780-789. [PMID: 40383817 DOI: 10.1038/s41594-025-01548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/18/2025] [Indexed: 05/20/2025]
Abstract
The variety of modifications decorating various RNA species has prompted researchers to study messenger RNA (mRNA) modifications that are likely to have, like N6-methyladenosine (m6A), important biological functions. Yet tackling these modifications has proved more complicated than anticipated. In this Perspective, we discuss two major obstacles to progress in epitranscriptomic research: the low abundance of most mRNA modification and the nonspecificity of many mRNA modifiers. We then shift our focus to the removal of mRNA modifications and their upstream regulation, emphasizing the context-dependent nature of epitranscriptomic regulation. We illustrate how specific modifications, such as N1-methyladenosine (m1A) and pseudouridine, are enriched in distinct environments, most notably within mitochondria and in certain physiopathological conditions. By focusing on biological settings in which non-m6A modifications are more abundant, we could deepen our understanding of their precise roles in gene regulation.
Collapse
Affiliation(s)
- Audrey Penning
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre, Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB-Cancer Research Centre, Université libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium.
| |
Collapse
|
3
|
Artika IM, Arianti R, Demény MÁ, Kristóf E. RNA modifications and their role in gene expression. Front Mol Biosci 2025; 12:1537861. [PMID: 40351534 PMCID: PMC12061695 DOI: 10.3389/fmolb.2025.1537861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Post-transcriptional RNA modifications have recently emerged as critical regulators of gene expression programs. Understanding normal tissue development and disease susceptibility requires knowledge of the various cellular mechanisms which control gene expression in multicellular organisms. Research into how different RNA modifications such as in N6-methyladenosine (m6A), inosine (I), 5-methylcytosine (m5C), pseudouridine (Ψ), 5-hydroxymethylcytosine (hm5C), N1-methyladenosine (m1A), N6,2'-O-dimethyladenosine (m6Am), 2'-O-methylation (Nm), N7-methylguanosine (m7G) etc. affect the expression of genes could be valuable. This review highlights the current understanding of RNA modification, methods used to study RNA modification, types of RNA modification, and molecular mechanisms underlying RNA modification. The role of RNA modification in modulating gene expression in both physiological and diseased states is discussed. The potential applications of RNA modification in therapeutic development are elucidated.
Collapse
Affiliation(s)
- I. Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, Indonesia
| | - Máté Á. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Esteller M. Targeting RNA modifications in leukaemia: Epitranscriptomic drugs are the new kids on the block. Br J Haematol 2025; 206:785-787. [PMID: 39523653 DOI: 10.1111/bjh.19894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
In this article, Chen et al. show that a chemical modification of transfer RNA, along its corresponding RNA modifier enzyme, is diminished in acute myeloid leukaemia. These findings further support the role of an aberrant epitranscriptome in haematological malignancies. Commentary on: Chen et al. Hydroxy-wybutosine tRNA modifications as indicators of disease progression and therapeutic targets in leukemia. Br J Haematol 2025; 206:517-530.
Collapse
MESH Headings
- Humans
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Epigenesis, Genetic/drug effects
- RNA Processing, Post-Transcriptional/drug effects
- Transcriptome/drug effects
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia/genetics
- Leukemia/drug therapy
- Leukemia/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukemia Research Institute (IJC), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Vujaklija I, Biđin S, Volarić M, Bakić S, Li Z, Foo R, Liu J, Šikić M. Detecting a wide range of epitranscriptomic modifications using a nanopore-sequencing-based computational approach with 1D score-clustering. Nucleic Acids Res 2025; 53:gkae1168. [PMID: 39658045 PMCID: PMC11724293 DOI: 10.1093/nar/gkae1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
To date, over 40 epigenetic and 300 epitranscriptomic modifications have been identified. However, current short-read sequencing-based experimental methods can detect <10% of these modifications. Integrating long-read sequencing technologies with advanced computational approaches, including statistical analysis and machine learning, offers a promising new frontier to address this challenge. While supervised machine learning methods have achieved some success, their usefulness is restricted to a limited number of well-characterized modifications. Here, we introduce Modena, an innovative unsupervised learning approach utilizing long-read nanopore sequencing capable of detecting a broad range of modifications. Modena outperformed other methods in five out of six benchmark datasets, in some cases by a wide margin, while being equally competitive with the second best method on one dataset. Uniquely, Modena also demonstrates consistent accuracy on a DNA dataset, distinguishing it from other approaches. A key feature of Modena is its use of 'dynamic thresholding', an approach based on 1D score-clustering. This methodology differs substantially from the traditional statistics-based 'hard-thresholds.' We show that this approach is not limited to Modena but has broader applicability. Specifically, when combined with two existing algorithms, 'dynamic thresholding' significantly enhances their performance, resulting in up to a threefold improvement in F1-scores.
Collapse
Affiliation(s)
- Ivan Vujaklija
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
| | - Siniša Biđin
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
| | - Marin Volarić
- Laboratory of non-coding DNA, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Bakić
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Zhe Li
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
| | - Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Mile Šikić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
| |
Collapse
|
6
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
7
|
Kvolik Pavić A, Čonkaš J, Mumlek I, Zubčić V, Ozretić P. Clinician's Guide to Epitranscriptomics: An Example of N 1-Methyladenosine (m 1A) RNA Modification and Cancer. Life (Basel) 2024; 14:1230. [PMID: 39459530 PMCID: PMC11508930 DOI: 10.3390/life14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Epitranscriptomics is the study of modifications of RNA molecules by small molecular residues, such as the methyl (-CH3) group. These modifications are inheritable and reversible. A specific group of enzymes called "writers" introduces the change to the RNA; "erasers" delete it, while "readers" stimulate a downstream effect. Epitranscriptomic changes are present in every type of organism from single-celled ones to plants and animals and are a key to normal development as well as pathologic processes. Oncology is a fast-paced field, where a better understanding of tumor biology and (epi)genetics is necessary to provide new therapeutic targets and better clinical outcomes. Recently, changes to the epitranscriptome have been shown to be drivers of tumorigenesis, biomarkers, and means of predicting outcomes, as well as potential therapeutic targets. In this review, we aimed to give a concise overview of epitranscriptomics in the context of neoplastic disease with a focus on N1-methyladenosine (m1A) modification, in layman's terms, to bring closer this omics to clinicians and their future clinical practice.
Collapse
Affiliation(s)
- Ana Kvolik Pavić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Josipa Čonkaš
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ivan Mumlek
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vedran Zubčić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
8
|
Sun J, Wu J, Yuan Y, Fan L, Chua WLP, Ling YHS, Balamkundu S, priya D, Suen HCS, de Crécy-Lagard V, Dziergowska A, Dedon PC. tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601603. [PMID: 39005467 PMCID: PMC11245014 DOI: 10.1101/2024.07.01.601603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa. Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Junzhou Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Leon Fan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | | | - Dwija priya
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Hazel Chay Suen Suen
- Department of Food, Chemical & Biotechnology, Singapore of Institute of Technology, 138683 Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Genetic Institute, University of Florida, Gainesville, FL 32611 USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| |
Collapse
|
9
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
10
|
Amalric A, Attina A, Bastide A, Buffard M, Mateus S, Planque C, Rivals E, Hirtz C, David A. Mass Spectrometry-Based Pipeline for Identifying RNA Modifications Involved in a Functional Process: Application to Cancer Cell Adaptation. Anal Chem 2024; 96:1825-1833. [PMID: 38275837 PMCID: PMC10851184 DOI: 10.1021/acs.analchem.3c02635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Cancer onset and progression are known to be regulated by genetic and epigenetic events, including RNA modifications (a.k.a. epitranscriptomics). So far, more than 150 chemical modifications have been described in all RNA subtypes, including messenger, ribosomal, and transfer RNAs. RNA modifications and their regulators are known to be implicated in all steps of post-transcriptional regulation. The dysregulation of this complex yet delicate balance can contribute to disease evolution, particularly in the context of carcinogenesis, where cells are subjected to various stresses. We sought to discover RNA modifications involved in cancer cell adaptation to inhospitable environments, a peculiar feature of cancer stem cells (CSCs). We were particularly interested in the RNA marks that help the adaptation of cancer cells to suspension culture, which is often used as a surrogate to evaluate the tumorigenic potential. For this purpose, we designed an experimental pipeline consisting of four steps: (1) cell culture in different growth conditions to favor CSC survival; (2) simultaneous RNA subtype (mRNA, rRNA, tRNA) enrichment and RNA hydrolysis; (3) the multiplex analysis of nucleosides by LC-MS/MS followed by statistical/bioinformatic analysis; and (4) the functional validation of identified RNA marks. This study demonstrates that the RNA modification landscape evolves along with the cancer cell phenotype under growth constraints. Remarkably, we discovered a short epitranscriptomic signature, conserved across colorectal cancer cell lines and associated with enrichment in CSCs. Functional tests confirmed the importance of selected marks in the process of adaptation to suspension culture, confirming the validity of our approach and opening up interesting prospects in the field.
Collapse
Affiliation(s)
- Amandine Amalric
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| | - Aurore Attina
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| | - Amandine Bastide
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Marion Buffard
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
- LIRMM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Stéphanie Mateus
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Chris Planque
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Eric Rivals
- LIRMM, Université de Montpellier,
CNRS, 34090 Montpellier, France
| | - Christophe Hirtz
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| | - Alexandre David
- IGF,
INSERM, Université de Montpellier,
CNRS, 34090 Montpellier, France
- IRMB-PPC,
INM, CHU Montpellier, INSERM, Université
de Montpellier, CNRS, 34090 Montpellier, France
| |
Collapse
|
11
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
12
|
Ramsoomair CK, Ceccarelli M, Heiss JD, Shah AH. The epitranscriptome of high-grade gliomas: a promising therapeutic target with implications from the tumor microenvironment to endogenous retroviruses. J Transl Med 2023; 21:893. [PMID: 38071304 PMCID: PMC10709919 DOI: 10.1186/s12967-023-04725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma (GBM) comprises 45.6% of all primary malignant brain cancers and is one of the most common and aggressive intracranial tumors in adults. Intratumoral heterogeneity with a wide range of proteomic, genetic, and epigenetic dysregulation contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. To date, numerous clinical trials have been developed to target the proteome and epigenome of high-grade gliomas with promising results. However, studying RNA modifications, or RNA epitranscriptomics, is a new frontier within neuro-oncology. RNA epitranscriptomics was discovered in the 1970s, but in the last decade, the extent of modification of mRNA and various non-coding RNAs has emerged and been implicated in transposable element activation and many other oncogenic processes within the tumor microenvironment. This review provides background information and discusses the therapeutic potential of agents modulating epitranscriptomics in high-grade gliomas. A particular emphasis will be placed on how combination therapies that include immune agents targeting hERV-mediated viral mimicry could improve the treatment of GBM.
Collapse
Affiliation(s)
- Christian K Ramsoomair
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
- Medical Scientist Training Program, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1550 N.W. 10Th Avenue, Miami, FL, 33136, USA
| | - John D Heiss
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish H Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1095 NW 14Th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Han M, Sun H, Zhou Q, Liu J, Hu J, Yuan W, Sun Z. Effects of RNA methylation on Tumor angiogenesis and cancer progression. Mol Cancer 2023; 22:198. [PMID: 38053093 PMCID: PMC10698974 DOI: 10.1186/s12943-023-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Mingyu Han
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
14
|
Imbriano C, Moresi V, Belluti S, Renzini A, Cavioli G, Maretti E, Molinari S. Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives. Int J Mol Sci 2023; 24:15161. [PMID: 37894843 PMCID: PMC10606696 DOI: 10.3390/ijms242015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications.
Collapse
Affiliation(s)
- Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy;
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| |
Collapse
|
15
|
Maldonado López AM, Ko EK, Huang S, Pacella G, Kuprasertkul N, D’souza CA, Reyes Hueros RA, Shen H, Stoute J, Elashal H, Sinkfield M, Anderson A, Prouty S, Li HB, Seykora JT, Liu KF, Capell BC. Mettl3-catalyzed m 6A regulates histone modifier and modification expression in self-renewing somatic tissue. SCIENCE ADVANCES 2023; 9:eadg5234. [PMID: 37656787 PMCID: PMC10854438 DOI: 10.1126/sciadv.adg5234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant modification on messenger RNAs (mRNAs) and is catalyzed by methyltransferase-like protein 3 (Mettl3). To understand the role of m6A in a self-renewing somatic tissue, we deleted Mettl3 in epidermal progenitors in vivo. Mice lacking Mettl3 demonstrate marked features of dysfunctional development and self-renewal, including a loss of hair follicle morphogenesis and impaired cell adhesion and polarity associated with oral ulcerations. We show that Mettl3 promotes the m6A-mediated degradation of mRNAs encoding critical histone modifying enzymes. Depletion of Mettl3 results in the loss of m6A on these mRNAs and increases their expression and associated modifications, resulting in widespread gene expression abnormalities that mirror the gross phenotypic abnormalities. Collectively, these results have identified an additional layer of gene regulation within epithelial tissues, revealing an essential role for m6A in the regulation of chromatin modifiers, and underscoring a critical role for Mettl3-catalyzed m6A in proper epithelial development and self-renewal.
Collapse
Affiliation(s)
- Alexandra M. Maldonado López
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eun Kyung Ko
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sijia Huang
- Penn Institute of Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Gina Pacella
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nina Kuprasertkul
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Carina A. D’souza
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Raúl A. Reyes Hueros
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hui Shen
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julian Stoute
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Heidi Elashal
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Morgan Sinkfield
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine-Yale University, Shanghai, China
| | - John T. Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C. Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
17
|
Cheng ASL. Meltdown of the cold tumour microenvironment: a new 'translational' approach to augment immunotherapy efficacy. Gut 2022; 72:gutjnl-2022-328861. [PMID: 36591616 DOI: 10.1136/gutjnl-2022-328861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Alfred Sze-Lok Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
18
|
Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: Future trends and technologies from the European Medicines Agency's horizon scanning collaborations. Front Med (Lausanne) 2022; 9:1064003. [PMID: 36569125 PMCID: PMC9772004 DOI: 10.3389/fmed.2022.1064003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
In medicines development, the progress in science and technology is accelerating. Awareness of these developments and their associated challenges and opportunities is essential for medicines regulators and others to translate them into benefits for society. In this context, the European Medicines Agency uses horizon scanning to shine a light on early signals of relevant innovation and technological trends with impact on medicinal products. This article provides the results of systematic horizon scanning exercises conducted by the Agency, in collaboration with the World Health Organization (WHO) and the European Commission's Joint Research Centre's (DG JRC). These collaborative exercises aim to inform policy-makers of new trends and increase preparedness in responding to them. A subset of 25 technological trends, divided into three clusters were selected and reviewed from the perspective of medicines regulators. For each of these trends, the expected impact and challenges for their adoption are discussed, along with recommendations for developers, regulators and policy makers.
Collapse
Affiliation(s)
- Valentina Vignali
- European Medicines Agency, Amsterdam, Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Philip A. Hines
- European Medicines Agency, Amsterdam, Netherlands
- Faculty of Health Medicines and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | | | - Ralf Herold
- European Medicines Agency, Amsterdam, Netherlands
| |
Collapse
|
19
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
20
|
Cancer epitranscriptomics in a nutshell. Curr Opin Genet Dev 2022; 75:101924. [PMID: 35679814 DOI: 10.1016/j.gde.2022.101924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
Remarkable technological progress has led to breakthrough discoveries in epitranscriptomics, reshaping our understanding of modifications decorating RNA. The past decade has seen a tremendous endeavor to describe the nature, functions, and biological roles of messenger RNA (mRNA) modifications, positioning epitranscriptomics as a crucial pillar in tumor biology. Like DNA and histone modifications, mRNA marks have been increasingly linked to cancer pathogenesis. Here, we summarize the latest research in cancer epitranscriptomics with emphasis on N6-methyladenosine, untangling its contribution to five prime oncogenic features: tumor growth, activating invasion and metastasis, stemness, metabolic reprogramming, and tumor microenvironment. We discuss mRNA-modifying enzymes, their impact on biological processes, and contribution to cancer hallmarks. We spotlight epitranscriptomics as a promising bonanza for forthcoming targeting approaches in cancer therapy.
Collapse
|
21
|
Gene expression and epigenetic markers of prion diseases. Cell Tissue Res 2022; 392:285-294. [PMID: 35307791 PMCID: PMC10113299 DOI: 10.1007/s00441-022-03603-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
Abstract
Epigenetics, meaning the variety of mechanisms underpinning gene regulation and chromatin states, plays a key role in normal development as well as in disease initiation and progression. Epigenetic mechanisms like alteration of DNA methylation, histone modifications, and non-coding RNAs, have been proposed as biomarkers for diagnosis, classification, or monitoring of responsiveness to treatment in many diseases. In prion diseases, the profound associations with human aging, the effects of cell type and differentiation on in vitro susceptibility, and recently identified human risk factors, all implicate causal epigenetic mechanisms. Here, we review the current state of the art of epigenetics in prion diseases and its interaction with genetic determinants. In particular, we will review recent advances made by several groups in the field profiling DNA methylation and microRNA expression in mammalian prion diseases and the potential for these discoveries to be exploited as biomarkers.
Collapse
|
22
|
Stefanska B, Tucker SJ, MacEwan DJ. Themed issue: 'New avenues in cancer prevention and treatment'. Br J Pharmacol 2022; 179:2789-2794. [PMID: 35146753 DOI: 10.1111/bph.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Barbara Stefanska
- Food Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Tucker
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|