1
|
Zhang S, Luo S, Zhang H, Xiao Q. Transmembrane protein 16A in the digestive diseases: A review of its physiology, pharmacology, and therapeutic opportunities. Int J Biol Macromol 2025; 310:143598. [PMID: 40300686 DOI: 10.1016/j.ijbiomac.2025.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Transmembrane protein 16A (TMEM16A) is a Ca2+-activated Cl- channel that is widely expressed in the digestive system, and numerous compounds have been developed for targeting TMEM16A. This review summarizes the current state of knowledge of physiological and pathological roles of TMEM16A in the digestive system, and discuss the potential therapeutic uses and challenges of TMEM16A modulators, with a focus on their selectivity, potency and molecular mechanisms as well as off-target tissue effects. We propose that TMEM16A exerts physiological and pathological roles in a tissue-specific or disease-specific way, and try to establish the idea that TMEM16A modulators are promising for therapeutic uses in digestive diseases such as secretory diarrhea, gastrointestinal motility disorders, and hepatobiliary and pancreatic diseases, as well as various cancers.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Gastroenterology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110031, China
| | - Shuya Luo
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Hong Zhang
- Department of Colorectal Oncology/General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Guo Y, Yuan T, Wang Y, Xia L, Zhang J, Fan S. Blockade of calcium-activated chloride channel ANO1 ameliorates ionizing radiation-induced intestinal injury. J Adv Res 2025:S2090-1232(25)00228-0. [PMID: 40210148 DOI: 10.1016/j.jare.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Radiation enteritis is one of the most frequent clinical complications of radiotherapy (RT), yet few effective strategies currently exist to protect against that. Anoctamin 1 (ANO1) functions both as a chloride channel and a signal transduction protein, influencing numerous pathophysiological processes. OBJECTIVES This study aimed to investigate whether targeting ANO1 could mitigate radiation-induced enteritis while enhancing tumor radiosensitivity. METHODS Quantitative PCR (qPCR) and Western blot (WB) were used to assess ANO1 expression and its changes after irradiation. Survival rates were recorded to evaluate the effects of ANO1 agonist and inhibitors. A cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor was administered to irradiated mice to investigate the role of chloride channel in radiation protection. qPCR and WB were executed to analyze the expression of relevant ion channels in intestinal epithelium. Functional validation was conducted using inhibitors in mice and 3D organoids. Fluorescent probe kits detected intracellular ion levels and membrane potential, and WB was performed to elucidate the underlying mechanisms. Finally, the radiosensitizing effect of CaCCinh-A01 was assessed in colorectal cancer (CRC) cells and validated in in vivo models. RESULTS Blocking the calcium-activated chloride channel (CaCC) protein ANO1, which is highly expressed in the colon, protects the intestine from radiation-induced damage. The ANO1 inhibitor CaCCinh-A01, suppresses CaCC currents, downregulates ANO1 protein expression, alleviates radiation-induced intestine injury, and enhances the radiosensitivity of CRC. Mechanistically, CaCCinh-A01 upregulates Na-K-Cl Cotransporter 1 (NKCC1) protein expression, leading to an increase in intracellular Cl- concentration and the inhibition of membrane depolarization in MODE-K cells. This subsequently inhibits p53-mediate DNA damage signaling, ultimately alleviating ionizing radiation-induced intestinal injury. CONCLUSION These findings suggest that targeting ANO1 not only alleviates radiation-induced intestinal injury in mice but also enhances CRC radiosensitivity. Thus, ANO1 represents a promising therapeutic target for mitigating the side effects of RT in CRC patients.
Collapse
Affiliation(s)
- Yuying Guo
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Tong Yuan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Yuna Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Immunotherapy, Chongqing 401336, China.
| | - Junling Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
3
|
Zhang J, Liu S, Yang W, Xie Y, Shao C, Zhang ZR, Li C, Yao X. Fusaric acid-mediated S-glutathionylation of MaAKT1 channel confers the virulence of Foc TR4 to banana. PLoS Pathog 2025; 21:e1013066. [PMID: 40203070 PMCID: PMC12040275 DOI: 10.1371/journal.ppat.1013066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 04/29/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Our previous studies have demonstrated that the phytotoxin fusaric acid (FSA), secreted by several Fusarium species, acts as a key factor in the development of plant diseases; however, the underlying mechanism remains unknown. In this study, we showed that the symptoms of Fusarium wilt in banana seedlings closely resembled those observed in plants grown under potassium (K+) deficiency conditions. Mechanistically, we found that FSA induces the accumulation of intracellular reactive oxygen species (ROS), which in turn inhibits banana K+ in banana roots. This inhibition occurs via S-glutathionylation of the banana AKT1 (MaAKT1) channel, leading to reduced K+ influx and reduced K+ content in banana roots. Through mutagenesis, electrophysiological studies, immunofluorescence staining, and co-immunoprecipitation experiment, we demonstrated that mutation of Cys202, a highly conserved site in the transmembrane segment 5 of MaAKT1, diminished the biochemical interaction of glutathione (GSH) and the channel induced by FSA, and alleviated Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) and FSA-induced yellowing symptom. The evolutionarily conserved function of this site for S-glutathionylation was also observed in Arabidopsis AKT1 (AtAKT1) channel, as mutation of its homologue site in AtAKT1 similarly reduced the GSH-AtAKT1 interaction under FSA stress. Collectively, our results suggest that FSA contributes to disease progression by decreasing K+ absorption through S-glutathionylation of MaAKT1 channel at the conserved Cys202 residue. These findings uncover a previously unrecognized role of FSA in regulating K+ homeostasis in bananas, and provide a foundation for future strategies to treat Fusarium wilt and increase banana production by targeting the conserved S-glutathionylation site in MaAKT1 channel.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Siwen Liu
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Wenlong Yang
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
| | - Yanling Xie
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
| | - Chuange Shao
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Ren Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chunyu Li
- School of Biomedical Sciences, Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Xiaoqiang Yao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Tang H, Zhou Y, Ma L, Ye Y, Xiao QX, Tang JQ, Xu Y. SIRT3 alleviates mitochondrial dysfunction and senescence in diabetes-associated periodontitis by deacetylating LRPPRC. Free Radic Biol Med 2025; 227:407-419. [PMID: 39557134 DOI: 10.1016/j.freeradbiomed.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
Diabetes-associated periodontitis (DP) is recognized as an inflammatory disease that can lead to teeth loss. Uncontrolled chronic low-grade inflammation-induced senescence impairs the stemness of human periodontal stem cells (hPDLSCs). Sirtuin 3 (SIRT3), an NAD+-dependent deacetylase, is pivotal in various biological processes and is closely linked to aging and aging-related diseases. This study aims to explore the mechanism of SIRT3-related senescence and osteogenic differentiation of hPDLSCs under DP and explored the novelty therapeutic targets. Our study revealed that SIRT3 expression was markedly inhibited in periodontal ligament stem cells (PDLSCs) stimulated by high glucose and lipopolysaccharide. Both in vitro and in vivo, reduced SIRT3 expression accelerated cell senescence and impaired osteogenic differentiation of hPDLSCs. We demonstrated that SIRT3 binds to and deacetylates leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), thereby modulating senescence. Additionally, we found that LRPPRC regulates senescence by modulating oxidative phosphorylation and oxidative stress. The activation of SIRT3 by honokiol significantly delayed senescence and promoted alveolar bone regeneration in mice after DP. Our findings indicate that the activation of SIRT3 negatively regulates hPDLSCs senescence by deacetylating LRPPRC, suggesting SIRT3 as a promising therapeutic target for DP.
Collapse
Affiliation(s)
- Hui Tang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Ma
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yu Ye
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qian-Xuan Xiao
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jing-Qi Tang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
5
|
Khosroshahi EM, Maghsoudloo M, Fahimi H, Mokhtari K, Entezari M, Peymani M, Hashemi M, Wan R. Determining expression changes of ANO7 and SLC38A4 membrane transporters in colorectal cancer. Heliyon 2024; 10:e34464. [PMID: 39114022 PMCID: PMC11305260 DOI: 10.1016/j.heliyon.2024.e34464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Membrane transporters are proteins responsible for facilitating the movement of molecules within biological membranes. They play a vital role in maintaining cellular homeostasis by regulating the transport of nutrients, ions, and other molecules into and out of cells. Our aim is to identify biomarkers in colorectal cancer using membrane transporter proteins. We utilized COAD TCGA data for this purpose. Subsequently, we conducted differential gene analysis and feature selection using membrane transporter proteins. Furthermore, we identified two potential genes, including ANO7 and SLC38A4. To validate the expression profiles of ANO7 and SLC38A4, key genes in this context, RT-qPCR was employed on colorectal cancer samples and adjacent normal tissues. Additionally, utilizing GEPIA2, Kaplan-Meier survival analysis, and cBioPortal, we assessed the status of these genes in various cancers, examining their methylation and mutation patterns. In conclusion, we suggest that ANO7 and SLC38A4 serve as prognostic biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Runlan Wan
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Liu F, Zhang Y, Xia X, Han J, Cao L. Honokiol regulates ovarian cancer cell malignant behavior through YAP/TAZ pathway modulation. J Obstet Gynaecol Res 2024; 50:1010-1019. [PMID: 38576101 DOI: 10.1111/jog.15940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Ovarian cancer (OVCA) stands as one of the most fatal gynecological malignancies. Honokiol (HNK) has been substantiated by numerous studies for its anti-tumor activity against malignancies including OVCA. Consequently, this work was designed to elucidate the impact of HNK-mediated modulation of the YAP/TAZ pathway on the biological functions of OVCA cells. METHODS OVCA cells were subjected to treatment with varying concentrations (0, 25, 50, 75, and 100 μM) of HNK, concomitant with the administration of YAP agonist (XMU). Assessment of cellular viability was executed employing the CCK-8 assay, while quantification of cellular proliferation transpired via colony formation assays. Apoptosis was ascertained using flow cytometry, and expression of apoptosis-related proteins (caspase-3, Bcl-2, Bax), EMT-related proteins (E-cadherin, N-cadherin), migration-associated proteins (MMP-2, MMP-9), and YAP/TAZ pathway-related proteins was evaluated by western blot. Transwell experiments were conducted to assess cellular migratory and invasive propensities. Xenograft tumor models were built to observe tumor growth (volume and weight), apoptosis was assessed by TUNEL staining, and Ki67 expression was evaluated through IHC. RESULTS HNK exerted inhibitory effects on the viability and proliferative capacity of OVCA cells, elicited apoptotic responses, curtailed the migratory and invasive tendencies of cells, and downregulated the YAP/TAZ pathway. Stimulation with YAP agonist (XMU-MP-1) partially attenuated the impacts of HNK on OVCA cell biology. Experiments in vivo confirmed that HNK inhibited OVCA tumor growth. CONCLUSION The outcomes of this investigation conclusively established that HNK orchestrated the modulation of the YAP/TAZ pathway, thereby exerting control over the malignant phenotypic manifestations of OVCA cells. The ascertained function of HNK in restraining cellular proliferation and tumor progression provided novel evidence of its anti-proliferative activity within OVCA cells.
Collapse
Affiliation(s)
- Fang Liu
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Yufang Zhang
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Xinyi Xia
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Jing Han
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Linyan Cao
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| |
Collapse
|
7
|
Li J, Chen YF, Gao L, Li YJ, Feng DX. Honokiol Prevents Intestinal Barrier Dysfunction in Mice with Severe Acute Pancreatitis and Inhibits JAK/STAT1 Pathway and Acetylation of HMGB1. Chin J Integr Med 2024; 30:534-542. [PMID: 37943488 DOI: 10.1007/s11655-023-3562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To investigate the effect of honokiol (HON) and the role of high-mobility group protein B1 (HMGB1) on the pathogenesis of severe acute pancreatitis (SAP). METHODS Thirty mice were numbered according to weight, and randomly divided into 5 groups using a random number table, including control, SAP, SAP and normal saline (SAP+NS), SAP and ethyl pyruvate (SAP+EP), or SAP+HON groups, 6 mice in each group. Samples of pancreas, intestine, and blood were collected 12 h after SAP model induction for examination of pathologic changes, immune function alterations by enzyme linked immunosorbent assay (ELISA), and Western blot. In vitro experiments, macrophages were divided into 5 groups, the control, lipopolysaccharide (LPS), LPS+DMSO (DMSO), LPS+anti-HMGB1 monoclonal antibody (mAb), and LPS+ HON groups. The tight connection level was determined by transmission electron microscopy and fluorescein isothiocyanate-labeled. The location and acetylation of HMGB1 were measured by Western blot. Finally, pyridone 6 and silencing signal transducer and activator of the transcription 1 (siSTAT1) combined with honokiol were added to determine whether the Janus kinase (JAK)/ STAT1 participated in the regulation of honokiol on HMGB1. The protein expression levels of HMGB1, JAK, and STAT1 were detected using Western blot. RESULTS Mice with SAP had inflammatory injury in the pancreas, bleeding of intestinal tissues, and cells with disrupted histology. Mice in the SAP+HON group had significantly fewer pathological changes. Mice with SAP also had significant increases in the serum levels of amylase, lipase, HMGB1, tumor necrosis factor- α, interleukin-6, diamine oxidase, endotoxin-1, and procalcitonin. Mice in the SAP+HON group did not show these abnormalities (P<0.01). Studies of Caco-2 cells indicated that LPS increased the levels of occludin and claudin-1 as well as tight junction permeability, decreased the levels of junctional adhesion molecule C, and elevated intercellular permeability (P<0.01). HON treatment blocked these effects. Studies of macrophages indicated that LPS led to low nuclear levels of HMGB1, however, HON treatment increased the nuclear level of HMGB1 (P<0.01). HON treatment also inhibited the expressions of JAK1, JAK2, and STAT1 (P<0.01) and increased the acetylation of HMGB1 (P<0.05). CONCLUSION HON prevented intestinal barrier dysfunction in SAP by inhibiting HMGB1 acetylation and JAK/STAT1 pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Ya-Feng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Lei Gao
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yi-Jie Li
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Dian-Xu Feng
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
8
|
Chen C, Aluksanasuwan S, Somsuan K. Expression of anoctamin 7 (ANO7) is associated with poor prognosis and mucin 2 (MUC2) in colon adenocarcinoma: a study based on TCGA data. Genomics Inform 2023; 21:e46. [PMID: 38224713 PMCID: PMC10788358 DOI: 10.5808/gi.23071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the predominant type of colorectal cancer. Early diagnosis and treatment can significantly improve the prognosis of COAD patients. Anoctamin 7 (ANO7), an anion channel protein, has been implicated in prostate cancer and other types of cancer. In this study, we analyzed the expression of ANO7 and its correlation with clinicopathological characteristics among COAD patients using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and the University of Alabama at Birmingham CANcer (UALCAN) databases. The GEPIA2, Kaplan-Meier plotter, and the Survival Genie platform were employed for survival analysis. The co-expression network and potential function of ANO7 in COAD were analyzed using GeneFriends, the Database for Annotation, Visualization and Integrated Discovery (DAVID), GeneMANIA, and Pathway Studio. Our data analysis revealed a significant reduction in ANO7 expression levels within COAD tissues compared to normal tissues. Additionally, ANO7 expression was found to be associated with race and histological subtype. The COAD patients exhibiting low ANO7 expression had lower survival rates compared to those with high ANO7 expression. The genes correlated with ANO7 were significantly enriched in proteolysis and mucin type O-glycan biosynthesis pathway. Furthermore, ANO7 demonstrated a direct interaction and a positive co-expression correlation with mucin 2 (MUC2). In conclusion, our findings suggest that ANO7 might serve as a potential prognostic biomarker and potentially plays a role in proteolysis and mucin biosynthesis in the context of COAD.
Collapse
Affiliation(s)
- Chen Chen
- Medical Science Graduate Program, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Keerakarn Somsuan
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
9
|
Hu M, Jiang W, Ye C, Hu T, Yu Q, Meng M, Sun L, Liang J, Chen Y. Honokiol attenuates high glucose-induced peripheral neuropathy via inhibiting ferroptosis and activating AMPK/SIRT1/PGC-1α pathway in Schwann cells. Phytother Res 2023; 37:5787-5802. [PMID: 37580045 DOI: 10.1002/ptr.7984] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Schwann cells injury induced by high glucose (HG) contributes to the development of diabetic peripheral neuropathy (DPN). Honokiol has been reported to regulate glucose metabolism, however, its effect on DPN and the precise molecular mechanisms remain unclear. This study aimed to investigate the role of AMPK/SIRT1/PGC-1α axis in the protective effects of honokiol on DPN. The biochemical assay and JC-1 staining results demonstrated that honokiol reduced HG-induced oxidative stress and ferroptosis as well as mitochondrial dysfunction in Schwann cells. RT-qPCR and western blotting were utilized to investigate the mechanism of action of honokiol, and the results showed that HG-induced inhibition of AMPK/SIRT1/PGC-1α axis and changes of downstream gene expression profile were restored by honokiol. Moreover, silencing of Sirt1 by siRNA delivery markedly diminished the changes of gene expression profile induced by honokiol in HG-induced Schwann cells. More importantly, we found that administration of honokiol remarkably attenuated DPN via improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in streptozotocin-induced diabetic rats. Collectively, these results demonstrate that honokiol can attenuate HG-induced Schwann cells injury and peripheral nerve dysfunction, suggesting a novel potential strategy for treatment of DPN.
Collapse
Affiliation(s)
- Man Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Wen Jiang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chen Ye
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ting Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qingqing Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Moran Meng
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lijuan Sun
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
10
|
Li S, Wang Z, Geng R, Zhang W, Wan H, Kang X, Guo S. TMEM16A ion channel: A novel target for cancer treatment. Life Sci 2023; 331:122034. [PMID: 37611692 DOI: 10.1016/j.lfs.2023.122034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Cancer draws attention owing to the high morbidity and mortality. It is urgent to develop safe and effective cancer therapeutics. The calcium-activated chloride channel TMEM16A is widely distributed in various tissues and regulates physiological functions. TMEM16A is abnormally expressed in several cancers and associate with tumorigenesis, metastasis, and prognosis. Knockdown or inhibition of TMEM16A in cancer cells significantly inhibits cancer development. Therefore, TMEM16A is considered as a biomarker and therapeutic target for some cancers. This work reviews the cancers associated with TMEM16A. Then, the molecular mechanism of TMEM16A overexpression in cancer was analyzed, and the possible signal transduction mechanism of TMEM16A regulating cancer development was summarized. Finally, TMEM16A inhibitors with anticancer effect and their anticancer mechanism were concluded. We hope to provide new ideas for pharmacological studies on TMEM16A in cancer.
Collapse
Affiliation(s)
- Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhichen Wang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
11
|
Khatoon F, Ali S, Kumar V, Elasbali AM, Alhassan HH, Alharethi SH, Islam A, Hassan MI. Pharmacological features, health benefits and clinical implications of honokiol. J Biomol Struct Dyn 2023; 41:7511-7533. [PMID: 36093963 DOI: 10.1080/07391102.2022.2120541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Honokiol (HNK) is a natural polyphenolic compound extracted from the bark and leaves of Magnolia grandiflora. It has been traditionally used as a medicinal compound to treat inflammatory diseases. HNK possesses numerous health benefits with a minimal level of toxicity. It can cross the blood-brain barrier and blood-cerebrospinal fluid, thus having significant bioavailability in the neurological tissues. HNK is a promising bioactive compound possesses neuroprotective, antimicrobial, anti-tumorigenic, anti-spasmodic, antidepressant, analgesic, and antithrombotic features . HNK can prevent the growth of several cancer types and haematological malignancies. Recent studies suggested its role in COVID-19 therapy. It binds effectively with several molecular targets, including apoptotic factors, chemokines, transcription factors, cell surface adhesion molecules, and kinases. HNK has excellent pharmacological features and a wide range of chemotherapeutic effects, and thus, researchers have increased interest in improving the therapeutic implications of HNK to the clinic as a novel agent. This review focused on the therapeutic implications of HNK, highlighting clinical and pharmacological features and the underlying mechanism of action.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
12
|
Shi S, Ma B, Ji Q, Guo S, An H, Ye S. Identification of a druggable pocket of the calcium-activated chloride channel TMEM16A in its open state. J Biol Chem 2023:104780. [PMID: 37142220 DOI: 10.1016/j.jbc.2023.104780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The calcium-activated chloride channel TMEM16A is a potential drug target to treat hypertension, secretory diarrhea, and several cancers. However, all reported TMEM16A structures are either closed or desensitized, and direct inhibition of the open state by drug molecules lacks a reliable structural basis. Therefore, revealing the druggable pocket of TMEM16A exposed in the open state is important for understanding protein-ligand interactions and facilitating rational drug design. Here, we reconstructed the calcium-activated open conformation of TMEM16A using an enhanced sampling algorithm and segmental modeling. Furthermore, we identified an open state druggable pocket and screened a potent TMEM16A inhibitor, etoposide, which is a derivative of a traditional herbal monomer. Molecular simulations and site-directed mutagenesis showed that etoposide binds to the open state of TMEM16A, thereby blocking the ion conductance pore of the channel. Finally, we demonstrated that etoposide can target TMEM16A to inhibit the proliferation of prostate cancer PC-3 cells. Together, these findings provide a deep understanding of the TMEM16A open state at an atomic level and identify pockets for the design of novel inhibitors with broad applications in chloride channel biology, biophysics, and medicinal chemistry.
Collapse
Affiliation(s)
- Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Biao Ma
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
| | - Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Hailong An
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China.
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
13
|
Targeting Annexin A1 as a Druggable Player to Enhance the Anti-Tumor Role of Honokiol in Colon Cancer through Autophagic Pathway. Pharmaceuticals (Basel) 2023; 16:ph16010070. [PMID: 36678567 PMCID: PMC9862434 DOI: 10.3390/ph16010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Colon cancer is one of the most common digestive tract malignancies, having the second highest mortality rate among all tumors, with a five-year survival of advanced patients of only 10%. Efficient, targeted drugs are still lacking in treating colon cancer, so it is urgent to explore novel druggable targets. Here, we demonstrated that annexin A1 (ANXA1) was overexpressed in tumors of 50% of colon cancer patients, and ANXA1 overexpression was significantly negatively correlated with the poor prognosis of colon cancer. ANXA1 promoted the abnormal proliferation of colon cancer cells in vitro and in vivo by regulating the cell cycle, while the knockdown of ANXA1 almost totally inhibited the growth of colon cancer cells in vivo. Furthermore, ANXA1 antagonized the autophagic death of honokiol in colon cancer cells via stabilizing mitochondrial reactive oxygen species. Based on these results, we speculated that ANXA1 might be a druggable target to control colon cancer and overcome drug resistance.
Collapse
|
14
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
15
|
Schreiber R, Cabrita I, Kunzelmann K. Paneth Cell Secretion in vivo Requires Expression of Tmem16a and Tmem16f. GASTRO HEP ADVANCES 2022; 1:1088-1098. [PMID: 39131261 PMCID: PMC11308424 DOI: 10.1016/j.gastha.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Paneth cells play a central role in intestinal innate immune response. These cells are localized at the base of small intestinal crypts of Lieberkuhn. The calcium-activated chloride channel TMEM16A and the phospholipid scramblase TMEM16F control intracellular Ca2+ signaling and exocytosis. We analyzed the role of TMEM16A and TMEM16F for Paneth cells secretion. Methods Mice with intestinal epithelial knockout of Tmem16a (Tmem16a-/-) and Tmem16f (Tmem16f-/-) were generated. Tissue structures and Paneth cells were analyzed, and Paneth cell exocytosis was examined in small intestinal organoids in vitro. Intracellular Ca2+ signals were measured and were compared between wild-type and Tmem16 knockout mice. Bacterial colonization and intestinal apoptosis were analyzed. Results Paneth cells in the crypts of Lieberkuhn from Tmem16a-/- and Tmem16f-/- mice demonstrated accumulation of lysozyme. Tmem16a and Tmem16f were localized in wild-type Paneth cells but were absent in cells from knockout animals. Paneth cell number and size were enhanced in the crypt base and mucus accumulated in intestinal goblet cells of knockout animals. Granule fusion and exocytosis on cholinergic and purinergic stimulation were examined online. Both were strongly compromised in the absence of Tmem16a or Tmem16f and were also blocked by inhibition of Tmem16a/f. Purinergic Ca2+ signaling was largely inhibited in Tmem16a knockout mice. Jejunal bacterial content was enhanced in knockout mice, whereas cellular apoptosis was inhibited. Conclusion The present data demonstrate the role of Tmem16 for exocytosis in Paneth cells. Inhibition or activation of Tmem16a/f is likely to affect microbial content and immune functions present in the small intestine.
Collapse
Affiliation(s)
- Rainer Schreiber
- Institut für Physiologie, Universität Regensburg, Regensburg, Bavaria, Germany
| | - Ines Cabrita
- Nephrologisches Forschungslabor, University of Cologne, Köln, NRW, Germany
| | - Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
16
|
Zafirlukast inhibits the growth of lung adenocarcinoma via inhibiting TMEM16A channel activity. J Biol Chem 2022; 298:101731. [PMID: 35176281 PMCID: PMC8931426 DOI: 10.1016/j.jbc.2022.101731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lung cancer has the highest mortality among cancers worldwide due to its high incidence and lack of the effective cures. We have previously demonstrated that the membrane ion channel TMEM16A is a potential drug target for the treatment of lung adenocarcinoma and have identified a pocket of inhibitor binding that provides the basis for screening promising new inhibitors. However, conventional drug discovery strategies are lengthy and costly, and the unpredictable side effects lead to a high failure rate in drug development. Therefore, finding new therapeutic directions for already marketed drugs may be a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library of over 1400 Food and Drug Administration-approved drugs through virtual screening and activity testing. We identified a drug candidate, Zafirlukast (ZAF), clinically approved for the treatment of asthma, that could inhibit the TMEM16A channel in a concentration-dependent manner. Molecular dynamics simulations and site-directed mutagenesis experiments showed that ZAF can bind to S387/N533/R535 in the nonselective inhibitor binding pocket, thereby blocking the channel pore. Furthermore, we demonstrate ZAF can target TMEM16A channel to inhibit the proliferation and migration of lung adenocarcinoma LA795 cells. In vivo experiments showed that ZAF can significantly inhibit lung adenocarcinoma tumor growth in mice. Taken together, we identified ZAF as a novel TMEM16A channel inhibitor with excellent anticancer activity, and as such, it represents a promising candidate for future preclinical and clinical studies.
Collapse
|