1
|
Lacasse É, Dubuc I, Gudimard L, Andrade ACDSP, Gravel A, Greffard K, Chamberland A, Oger C, Galano JM, Durand T, Philipe É, Blanchet MR, Bilodeau JF, Flamand L. Delayed viral clearance and altered inflammatory responses affect severity of SARS-CoV-2 infection in aged mice. Immun Ageing 2025; 22:11. [PMID: 40075368 PMCID: PMC11899864 DOI: 10.1186/s12979-025-00503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Epidemiological investigations consistently demonstrate an overrepresentation of the elderly in COVID-19 hospitalizations and fatalities, making the advanced age as a major predictor of disease severity. Despite this, a comprehensive understanding of the cellular and molecular mechanisms explaining how old age represents a major risk factor remain elusive. To investigate this, we compared SARS-CoV-2 infection outcomes in young adults (2 months) and geriatric (15-22 months) mice. Both groups of K18-ACE2 mice were intranasally infected with 500 TCID50 of SARS-CoV-2 Delta variant with analyses performed on days 3, 5, and 7 post-infection (DPI). Analyses included pulmonary cytokines, lung RNA-seq, viral loads, lipidomic profiles, and histological assessments, with a concurrent evaluation of the percentage of mice reaching humane endpoints. The findings unveiled notable differences, with aged mice exhibiting impaired viral clearance, reduced survival, and failure to recover weight loss due to infection. RNA-seq data suggested greater lung damage and reduced respiratory function in infected aged mice. Additionally, elderly-infected mice exhibited a deficient antiviral response characterized by reduced Th1-associated mediators (IFNγ, CCL2, CCL3, CXCL9) and diminished number of macrophages, NK cells, and T cells. Furthermore, mass-spectrometry analysis of the lung lipidome indicated altered expression of several lipids with immunomodulatory and pro-resolution effects in aged mice such as Resolvin, HOTrEs, and NeuroP, but also DiHOMEs-related ARDS. These findings indicate that aging affects antiviral immunity, leading to prolonged infection, greater lung damage, and poorer clinical outcomes. This underscores the potential efficacy of immunomodulatory treatments for elderly subjects experiencing symptoms of severe COVID-19.
Collapse
Affiliation(s)
- Émile Lacasse
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Leslie Gudimard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Ana Claudia Dos S P Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Annie Gravel
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
| | | | - Camille Oger
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut Des Biomolécules Max Mousseron, UMR 5247, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Éric Philipe
- Département de Chirurgie, Faculté de Médecine, Université, Québec, QC, Canada
| | - Marie-Renée Blanchet
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
- Centre de Recherche de L'Institut de Cardiologie de Québec, Université, Québec, QC, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier, Universitaire de Québec- Université Laval, Québec, QC, Canada.
- Département de Microbiologie, Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
2
|
Ma Y, Hui KL, Ambaw YA, Walther TC, Farese RV, Lengyel M, Gelashvili Z, Lu D, Niethammer P. DHRS7 Integrates NADP +/NADPH Redox Sensing with Inflammatory Lipid Signalling via the Oxoeicosanoid Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636725. [PMID: 39975387 PMCID: PMC11839141 DOI: 10.1101/2025.02.05.636725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During the innate immune response at epithelial wound sites, oxidative stress acts microbicidal and-mechanistically less well understood-as an immune and resilience signal. The reversible sulfhydryl (SH) oxidation of kinases, phosphatases, and transcription factors constitute the perhaps best-known redox signalling paradigm, whereas mechanisms that transduce metabolic redox cues, such as redox cofactor balance, remain little explored. Here, using mammalian cells, microsomes, and live zebrafish, we identify DHRS7, a short-chain fatty acid dehydrogenase/reductase (SDR), as conserved, 5-hydroxyeicosanoid dehydrogenase (5-HEDH). Under oxidative stress, DHRS7 consumes NADP+ to convert arachidonic acid (AA)-derived 5(S)-HETE into the inflammatory lipid 5-KETE, which activates leukocyte chemotaxis via the OXER1 receptor. While Dhrs7 acts as a NADPH-dependent 5-KETE sink in unstressed, healthy tissue, it promotes rapid, 5-KETE dependent leukocytic inflammation in wounded zebrafish skin. Thus, DHRS7 epitomizes an underappreciated mode of redox signalling-beyond classic SH oxidation-that leverages NADPH metabolism to generate or quench a paracrine lipid signal. Metabolic redox sensors like DHRS7 might be promising therapeutic targets in diseases characterized by disturbed redox balance.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yohannes A. Ambaw
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tobias C. Walther
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Robert V. Farese
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Miklos Lengyel
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Dajun Lu
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Malamos P, Kalyvianaki K, Panagiotopoulos AA, Vogiatzoglou AP, Tsikalaki AA, Katifori A, Polioudaki H, Darivianaki MN, Theodoropoulos PA, Panagiotidis CA, Notas G, Castanas E, Kampa M. Nuclear translocation of the membrane oxoeicosanoid/androgen receptor, OXER1: Possible mechanisms involved. Mol Cell Endocrinol 2024; 594:112357. [PMID: 39236798 DOI: 10.1016/j.mce.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OXER1, the receptor for the arachidonic acid metabolite 5-οxo-eicosatetraenoic acid (5-oxo-ETE), has been reported to also bind and mediate the membrane-initiated actions of androgens. Indeed, androgens antagonize the 5-oxo-ETE effects through OXER1, affecting a number of signaling pathways and inhibiting cancer cell proliferation and migration. OXER1, being a GPCR, was classically described to be localized in the plasma membrane. However, for numerous GPCRs, there is now strong evidence that they can be also found in other cellular compartments, including the nucleus. The aim of the present work was to investigate OXER1's possible localization in the nucleus and identify the mechanism(s) involved. For this purpose, we verified OXER1's nuclear presence by immunofluorescence and western blot, in whole cells and nuclei of two different prostate cancer cell lines (DU-145 and LNCaP) and in CHO cells transfected with a GFP labelled OXER1, both in untreated and OXER1 ligands' treated cells. Mutated, OXER1-tGFP expressing, CHO cells were used to verify that OXER1 agonist (5-oxo-ETE) binding is necessary for OXER1 nuclear translocation. NLS sequences were in silico identified, and a specific inhibitor, as well as, specific importins' siRNAs were also utilized to explore the mechanism involved. Moreover, we examined the role of palmitoylation in OXER1 nuclear translocation by in silico identifying possible palmitoylation sites and using a palmitoylation inhibitor. Our results clearly show that OXER1 can be localized in the nucleus, in an agonist-dependent manner, that is inhibited by androgens. We also provide evidence for two possible mechanisms for its nuclear trafficking, that involve receptor palmitoylation and importin-mediated cytoplasmic-nuclear transport. In our knowledge, it is the first time that a membrane androgen receptor is identified into the nucleus, suggesting an alternative, more direct, mode of action, involving nuclear mechanisms. Therefore, our findings provide new insights on androgen-mediated actions and androgen-lipid interactions, and reveal new possible therapeutic targets, not only for cancer, but also for other pathological conditions in which OXER1 may have an important role.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasios A Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Amalia P Vogiatzoglou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasia Artemis Tsikalaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Anastasia Katifori
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Hara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Maria N Darivianaki
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panayiotis A Theodoropoulos
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Christos A Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
4
|
Kalyvianaki K, Salampasi EM, Katsoulieris EN, Boukla E, Vogiatzoglou AP, Notas G, Castanas E, Kampa M. 5-Oxo-ETE/OXER1: A Link between Tumor Cells and Macrophages Leading to Regulation of Migration. Molecules 2023; 29:224. [PMID: 38202807 PMCID: PMC10780139 DOI: 10.3390/molecules29010224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammation is an important factor in the development of cancer. Macrophages found in tumors, known as tumor associated macrophages (TAMs), are key players in this process, promoting tumor growth through humoral and cellular mechanisms. 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), an arachidonic acid metabolite, has been described to possess a potent chemoattractant activity for human white blood cells (WBCs). The biological actions of 5-oxo-ETE are mediated through the GPCR 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor (OXER1). In addition, we have previously reported OXER1 as one of the membrane androgen receptors with testosterone antagonizing 5-oxo-ETE's actions. OXER1 is highly expressed in inflammatory cells and many normal and cancer tissues and cells, including prostate and breast cancer, promoting cancer cell survival. In the present study we investigate the expression and role of OXER1 in WBCs, THP-1 monocytes, and THP-1 derived macrophages, as well as its possible role in the interaction between macrophages and cancer cells (DU-145 and T47D). We report that OXER1 is differentially expressed between WBCs and macrophages and that receptor expression is modified by LPS treatment. Our results show that testosterone and 5-oxo-ETE can act in an antagonistic way affecting Ca2+ movements, migration, and cytokines' expression in immune-related cells, in a differentiation-dependent manner. Finally, we report that 5-oxo-ETE, through OXER1, can attract macrophages to the tumor site while tumor cells' OXER1 activation in DU-145 prostate and T47D breast cancer cells, by macrophages, induces actin cytoskeletal changes and increases their migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| |
Collapse
|
5
|
Panagiotopoulos AA, Konstantinou E, Pirintsos SA, Castanas E, Kampa M. Mining the ZINC database of natural products for specific, testosterone-like, OXER1 antagonists. Steroids 2023; 199:109309. [PMID: 37696380 DOI: 10.1016/j.steroids.2023.109309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
OXER1, the receptor for the oxidized arachidonic acid metabolite 5-oxo-ETE has been reported to play a significant role in inflammatory responses, being responsible for leucocyte chemotactic responses. Recently, we have identified OXER1 (GPR170) as a membrane receptor for androgens in prostate and breast cancer cells. Testosterone action via OXER1 induces specific Ca2+ release from intracellular organelles, modifies polymerized actin distribution induces apoptosis and decreases cancer cell migration. These actions are antagonized by 5-oxo-ETE. In addition, 5-oxo-ETE through a Gαi protein decreases cAMP, an action antagonized by testosterone. In this work, we mined the ZINC15 database, using QSAR, for natural compounds able to signal through Gαi and Gβγ simultaneously, mimicking testosterone actions, as well as for specific Gβγ interactors, inhibiting 5-oxo-ETE tumor promoting actions. We were able to identify four druggable Gαβγ and seven Gβγ specific OXER1 interactors. We further confirmed by bio-informatic methods their binding to the 5-oxo-ETE/testosterone binding groove of the receptor, their ADME properties and their possible interaction with other receptor and/or enzyme targets. Two compounds, ZINC04017374 (Naphthofluorescein) and ZINC08589130 (Puertogaline A) were purchased, tested in vitro and confirmed their OXER1 Gβγ and Gαβγ activity, respectively. The methodology followed is useful for a better understanding of the mechanism by which OXER1 mediates its actions, it has the potential to provide structural insights, in order to design small molecular specific interactors and ultimately design new anti-inflammatory and anti-cancer agents. Finally, the methodology may also be useful for identifying specific agonists/antagonists of other GPCRs.
Collapse
Affiliation(s)
| | - Evangelia Konstantinou
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | - Stergios A Pirintsos
- Department of Biology, School of Science and Technology, University of Crete, Heraklion, Greece; Botanical Garden, University of Crete, Rethymnon, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece.
| |
Collapse
|
6
|
Cooke M, Zhang S, Cornejo Maciel F, Kazanietz MG. Gi/o GPCRs drive the formation of actin-rich tunneling nanotubes in cancer cells via a Gβγ/PKCα/FARP1/Cdc42 axis. J Biol Chem 2023; 299:104983. [PMID: 37390986 PMCID: PMC10374973 DOI: 10.1016/j.jbc.2023.104983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gβγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C β3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fabiana Cornejo Maciel
- Departament of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; INBIOMED, CONICET, Buenos Aires, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Ma Y, Hui KL, Gelashvili Z, Niethammer P. Oxoeicosanoid signaling mediates early antimicrobial defense in zebrafish. Cell Rep 2023; 42:111974. [PMID: 36640321 PMCID: PMC9973399 DOI: 10.1016/j.celrep.2022.111974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
5-oxoETE is a bioactive lipid derived from arachidonic acid generated when phospholipase A2 activation coincides with oxidative stress. Through its G protein-coupled receptor OXER1, pure 5-oxoETE is a potent leukocyte chemoattractant. Yet, its physiological function has remained elusive owing to the unusual OXER1 conservation pattern. OXER1 is conserved from fish to primates but not in rodents, precluding genetic loss-of-function studies in mouse. To determine its physiological role, we combine transcriptomic, lipidomic, and intravital imaging assays with genetic perturbations of the OXER1 ortholog hcar1-4 in zebrafish. Pseudomonas aeruginosa infection induces the synthesis of 5-oxoETE and its receptor, along with other inflammatory pathways. Hcar1-4 deletion attenuates neutrophil recruitment and decreases post-infection survival, which could be rescued by ectopic expression of hcar1-4 or human OXER1. By revealing 5-oxoETE as dominant lipid regulator of the early antimicrobial response in a non-rodent vertebrate, our work expands the current, rodent-centric view of early inflammation.
Collapse
Affiliation(s)
- Yanan Ma
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - King Lam Hui
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zaza Gelashvili
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Cossette C, Chourey S, Ye Q, Reddy CN, Wang R, Poulet S, Slobodchikova I, Vuckovic D, Rokach J, Powell WS. Metabolism of anti-inflammatory OXE (oxoeicosanoid) receptor antagonists by nonhuman primates. Eur J Pharm Sci 2022; 172:106144. [DOI: 10.1016/j.ejps.2022.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
|