1
|
Wilkinson A, Reber SA, Root-Gutteridge H, Dassow A, Whiting MJ. Cold-blooded culture? Assessing cultural behaviour in reptiles and its potential conservation implications. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240129. [PMID: 40308129 PMCID: PMC12044374 DOI: 10.1098/rstb.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 05/02/2025] Open
Abstract
It is becoming clear that the cognition of a species plays an important role in successful conservation, with cultural processes being a fundamental part of this. However, in contrast to mammals and birds, very little is known about cultural processes (and the social learning that underlies these) in reptiles. Here, we summarize the current state of knowledge, consider why this information is so limited and assess candidate behaviours observed in the wild, which warrant further investigation through the lens of cultural traditions. We then make suggestions for the fundamental next steps necessary to start to address this issue. This includes future experimental work and also consideration of how existing datasets, such as those capturing animal movement or acoustic activity, can be used to assess cultural questions. In addition, we emphasize the important role that engaging key conservation stakeholders, such as zoos, aquaria and ecotourism providers, could play in furthering our understanding of cultural behaviour in this group and the potential conservation implications of this knowledge. Whether there is cultural behaviour in reptiles and the relationship that this has with conservation remain unclear; however, the findings of this review suggest that these are areas worthy of further research.This article is part of the theme issue 'Animal culture: conservation in a changing world'.
Collapse
Affiliation(s)
- Anna Wilkinson
- School of Natural Sciences, University of Lincoln, Lincoln LN6 7TS, UK
| | | | | | - Angela Dassow
- Department of Biology, Carthage College, Kenosha, Wisconsin 53140, USA
| | - Martin J. Whiting
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
2
|
Goforth KM, Lohmann CMF, Gavin A, Henning R, Harvey A, Hinton TL, Lim DS, Lohmann KJ. Learned magnetic map cues and two mechanisms of magnetoreception in turtles. Nature 2025; 638:1015-1022. [PMID: 39939776 DOI: 10.1038/s41586-024-08554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/19/2024] [Indexed: 02/14/2025]
Abstract
Growing evidence indicates that migratory animals exploit the magnetic field of the Earth for navigation, both as a compass to determine direction and as a map to determine geographical position1. It has long been proposed that, to navigate using a magnetic map, animals must learn the magnetic coordinates of the destination2,3, yet the pivotal hypothesis that animals can learn magnetic signatures of geographical areas has, to our knowledge, yet to be tested. Here we report that an iconic navigating species, the loggerhead turtle (Caretta caretta), can learn such information. When fed repeatedly in magnetic fields replicating those that exist in particular oceanic locations, juvenile turtles learned to distinguish magnetic fields in which they encountered food from magnetic fields that exist elsewhere, an ability that might underlie foraging site fidelity. Conditioned responses in this new magnetic map assay were unaffected by radiofrequency oscillating magnetic fields, a treatment expected to disrupt radical-pair-based chemical magnetoreception4-6, suggesting that the magnetic map sense of the turtle does not rely on this mechanism. By contrast, orientation behaviour that required use of the magnetic compass was disrupted by radiofrequency oscillating magnetic fields. The findings provide evidence that two different mechanisms of magnetoreception underlie the magnetic map and magnetic compass in sea turtles.
Collapse
Affiliation(s)
- Kayla M Goforth
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Catherine M F Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Gavin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reyco Henning
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Harvey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tara L Hinton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana S Lim
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth J Lohmann
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Eyal R, Albeck N, Shein-Idelson M. PreyTouch: a touchscreen-based closed-loop system for studying predator-prey interactions. Commun Biol 2024; 7:1650. [PMID: 39702825 DOI: 10.1038/s42003-024-07345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
The ability to catch prey is crucial for survival and reproduction and is subject to strong natural selection across predators. Prey capture demands the orchestrated activation of multiple brain regions and the interplay between sensory processing, decision-making, and motor execution. These factors, together with the ubiquity of prey capture across species makes it appealing for comparative studies across neuroscience and ecology. However, despite recent technological advances, experimental approaches for studying natural behaviors such as prey catch are lagging behind. To bridge this gap, we created PreyTouch-a novel approach for performing prey capture experiments that incorporate flexible prey control, accurate monitoring of predator touchscreen strikes and automated rewarding. Further, its real-time processing enables coupling predator movement and prey dynamics for studying predator-prey interactions. Finally, PreyTouch is optimized for automated long-term experiments featuring a web UI for remote control and monitoring. We successfully validated PreyTouch by conducting long-term prey capture experiments on the lizard Pogona vitticeps. This revealed the existence of prey preferences, complex prey attack patterns, and fast learning of prey dynamics. PreyTouch's unique features and the importance of studying prey capture behavior make it a valuable platform for connecting natural behavior with cognitive studies across various species and disciplines.
Collapse
Affiliation(s)
- Regev Eyal
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Albeck
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Osvath M, Johansson M. A short natural history of mental time travels: a journey still travelled? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230402. [PMID: 39278257 PMCID: PMC11496716 DOI: 10.1098/rstb.2023.0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
Tulving's introduction of episodic memory and the metaphor of mental time travel has immensely enriched our understanding of human cognition. However, his focus on human psychology, with limited consideration of evolutionary perspectives, led to the entrenched notion that mental time travel is uniquely human. We contend that adopting a phylogenetic perspective offers a deeper insight into cognition, revealing it as a continuous evolutionary process. Adherence to the uniqueness of pre-defined psychological concepts obstructs a more complete understanding. We offer a concise natural history to elucidate how events that occurred hundreds of millions of years ago have been pivotal for our ability to mentally time travel. We discuss how the human brain, utilizing parts with ancient origins in a networked manner, enables mental time travel. This underscores that episodic memories and mental time travel are not isolated mental constructs but integral to our perception and representation of the world. We conclude by examining recent evidence of neuroanatomical correlates found only in great apes, which show great variability, indicating the ongoing evolution of mental time travel in humans.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
|
5
|
Sakai O, Yokohata D, Hotta T. Boldness affects novel object recognition in a gecko species. Behav Processes 2024; 220:105072. [PMID: 38914379 DOI: 10.1016/j.beproc.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Individual animals exhibit considerable differences in cognitive characteristics associated with personality differences. The cognition-personality link was intensively investigated in the last decade though with mixed results. To grasp the general pattern, a common method should be applied to a wide range of animals. We tested novel object recognition (NOR) in the mourning gecko (Lepidodactylus lugubris) and investigated whether boldness, assessed in an anti-predator context, explained neophobia and how much attention animals pay to their surroundings. Boldness did not simply explain object neophobia but predicted attention to novel objects. Specifically, shy geckos showed shorter latency to approach the novel object than bold geckos only in the changed situation in which distinct types of objects were presented in two successive phases. However, no significant effect of boldness was detected in the unchanged situation in which the same object was presented twice. Our findings suggest that, in the mourning gecko, (1) boldness and object neophobia represent different aspects of personality traits and that (2) boldness underlies sensitivity to slight changes in the environment.
Collapse
Affiliation(s)
- Osamu Sakai
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto; Department of Environment Conservation, Tokyo University of Agriculture and Technology, Tokyo.
| | - Daichi Yokohata
- Department of Psychology, Graduate School of Science, Kyoto University, Kyoto
| | - Takashi Hotta
- Department of Psychology, Graduate School of Science, Kyoto University, Kyoto
| |
Collapse
|
6
|
Lin FC, Lin SM, Godfrey SS. Hidden social complexity behind vocal and acoustic communication in non-avian reptiles. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230200. [PMID: 38768204 PMCID: PMC11391309 DOI: 10.1098/rstb.2023.0200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 05/22/2024] Open
Abstract
Social interactions are inevitable in the lives of most animals, since most essential behaviours require interaction with conspecifics, such as mating and competing for resources. Non-avian reptiles are typically viewed as solitary animals that predominantly use their vision and olfaction to communicate with conspecifics. Nevertheless, in recent years, evidence is mounting that some reptiles can produce sounds and have the potential for acoustic communication. Reptiles that can produce sound have an additional communicative channel (in addition to visual/olfactory channels), which could suggest they have a higher communicative complexity, the evolution of which is assumed to be driven by the need of social interactions. Thus, acoustic reptiles may provide an opportunity to unveil the true social complexity of reptiles that are usually thought of as solitary. This review aims to reveal the hidden social interactions behind the use of sounds in non-avian reptiles. Our review suggests that the potential of vocal and acoustic communication and the complexity of social interactions may be underestimated in non-avian reptiles, and that acoustic reptiles may provide a great opportunity to uncover the coevolution between sociality and communication in non-avian reptiles. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Feng-Chun Lin
- Department of Zoology, University of Otago , Dunedin, New Zealand
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University , Taipei, Taiwan
| | | |
Collapse
|
7
|
Damas-Moreira I, Szabo B, Drosopoulos G, Stober C, Lisičić D, Caspers BA. Smarter in the city? Lizards from urban and semi-natural habitats do not differ in a cognitive task in two syntopic species. Curr Zool 2024; 70:361-370. [PMID: 39035752 PMCID: PMC11255991 DOI: 10.1093/cz/zoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024] Open
Abstract
Urbanization occurs at a global scale, imposing dramatic and abrupt environmental changes that lead to biodiversity loss. Yet, some animal species can handle these changes, and thrive in such artificial environments. One possible explanation is that urban individuals are equipped with better cognitive abilities, but most studies have focused on birds and mammals and yielded varied results. Reptiles have received much less attention, despite some lizard species being common city dwellers. The Italian wall lizard, Podarcis siculus, and the common wall lizard, Podarcis muralis, are two successful lizards in anthropogenic habitats that thrive in urban locations. To test for differences in a cognitive skill between urban and semi-natural environments, we investigated inhibitory control through a detour task in syntopic populations of the two species, across 249 lizards that were tested in partially artificial field settings. Sophisticated inhibitory control is considered essential for higher degrees of cognitive flexibility and other higher-level cognitive abilities. In this task, we confronted lizards with a transparent barrier, separating them from a desired shelter area that they could only reach by controlling their impulse to go straight and instead detour the barrier. We found no differences between lizards in urban and semi-natural environments, nor between species, but females overall performed better than males. Moreover, 48% of the lizards in our study did not perform a correct trial in any of the 5 trials, hinting at the difficulty of the task for these species. This study is among the first to address lizard cognition, through their inhibitory control, as a potential explanation for success in cities and highlights one should be careful with assuming that urban animals generally have enhanced cognitive performance, as it might be taxa, task, or condition dependent.
Collapse
Affiliation(s)
| | - Birgit Szabo
- Division of Behavioural Ecology, University of Bern, 3032, Switzerland
| | | | - Carolin Stober
- Department of Behavioural Ecology, Bielefeld University, 33615, Germany
| | - Duje Lisičić
- Department of Biology, University of Zagreb, 10000, Croatia
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, 33615, Germany
- Joint Institute of Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, 33615, Germany
| |
Collapse
|
8
|
Lin FC, Shaner PJL, Hsieh MY, Whiting MJ, Lin SM. Trained quantity discrimination in invasive red-eared slider and a comparison with the native stripe-necked turtle. Anim Cogn 2024; 27:26. [PMID: 38530499 PMCID: PMC10965720 DOI: 10.1007/s10071-024-01850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 03/28/2024]
Abstract
Little is known about the behavioral and cognitive traits that best predict invasion success. Evidence is mounting that cognitive performance correlates with survival and fecundity, two pivotal factors for the successful establishment of invasive populations. We assessed the quantity discrimination ability of the globally invasive red-eared slider (Trachemys scripta elegans). We further compared it to that of the native stripe-necked turtle (Mauremys sinensis), which has been previously evaluated for its superior quantity discrimination ability. Specifically, our experimental designs aimed to quantify the learning ability as numerosity pairs increased in difficulty (termed fixed numerosity tests), and the immediate response when turtles were presented with varied challenges concurrently in the same tests (termed mixed numerosity tests). Our findings reaffirm the remarkable ability of freshwater turtles to discern numerical differences as close as 9 vs 10 (ratio = 0.9), which was comparable to the stripe-necked turtle's performance. However, the red-eared slider exhibited a moderate decrease in performance in high ratio tests, indicating a potentially enhanced cognitive capacity to adapt to novel challenges. Our experimental design is repeatable and is adaptable to a range of freshwater turtles. These findings emphasize the potential importance of cognitive research to the underlying mechanisms of successful species invasions.
Collapse
Affiliation(s)
- Feng-Chun Lin
- Department of Zoology, University of Otago, Dunedin, New Zealand
- School of Life Science, National Taiwan Normal University, No. 88, Tingzhou Road Section 4, Taipei, 116, Taiwan
| | - Pei-Jen Lee Shaner
- School of Life Science, National Taiwan Normal University, No. 88, Tingzhou Road Section 4, Taipei, 116, Taiwan
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | | | - Martin J Whiting
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, No. 88, Tingzhou Road Section 4, Taipei, 116, Taiwan.
| |
Collapse
|
9
|
Eisenberg T, Shein-Idelson M. ReptiLearn: An automated home cage system for behavioral experiments in reptiles without human intervention. PLoS Biol 2024; 22:e3002411. [PMID: 38422162 PMCID: PMC10931465 DOI: 10.1371/journal.pbio.3002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding behavior and its evolutionary underpinnings is crucial for unraveling the complexities of brain function. Traditional approaches strive to reduce behavioral complexity by designing short-term, highly constrained behavioral tasks with dichotomous choices in which animals respond to defined external perturbation. In contrast, natural behaviors evolve over multiple time scales during which actions are selected through bidirectional interactions with the environment and without human intervention. Recent technological advancements have opened up new possibilities for experimental designs that more closely mirror natural behaviors by replacing stringent experimental control with accurate multidimensional behavioral analysis. However, these approaches have been tailored to fit only a small number of species. This specificity limits the experimental opportunities offered by species diversity. Further, it hampers comparative analyses that are essential for extracting overarching behavioral principles and for examining behavior from an evolutionary perspective. To address this limitation, we developed ReptiLearn-a versatile, low-cost, Python-based solution, optimized for conducting automated long-term experiments in the home cage of reptiles, without human intervention. In addition, this system offers unique features such as precise temperature measurement and control, live prey reward dispensers, engagement with touch screens, and remote control through a user-friendly web interface. Finally, ReptiLearn incorporates low-latency closed-loop feedback allowing bidirectional interactions between animals and their environments. Thus, ReptiLearn provides a comprehensive solution for researchers studying behavior in ectotherms and beyond, bridging the gap between constrained laboratory settings and natural behavior in nonconventional model systems. We demonstrate the capabilities of ReptiLearn by automatically training the lizard Pogona vitticeps on a complex spatial learning task requiring association learning, displaced reward learning, and reversal learning.
Collapse
Affiliation(s)
- Tal Eisenberg
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
10
|
Krönke F, Xu L. Sensory Stimulation as a Means of Sustained Enhancement of Well-Being in Leopard Geckos, Eublepharis macularius (Eublepharidae, Squamata). Animals (Basel) 2023; 13:3595. [PMID: 38066945 PMCID: PMC10705344 DOI: 10.3390/ani13233595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 10/16/2024] Open
Abstract
Although the private keeping of reptiles has boomed in most western countries since the millennium, studies dealing with the recognition and promotion of welfare in these reptiles seem to represent a blind spot of scientific attention. The vast majority of studies from the field of animal welfare science still concern mammals and birds. The leopard gecko is probably the most common lizard that is kept in domestic terrariums worldwide. Due to its characteristic as an ecological generalist, it is easy to keep and breed, and it is considered a good "starter reptile" for beginners as it "condones" husbandry mistakes, even for extended periods. However, being a mass species is not a second-class classification. They, too, have an equal claim to good well-being as all animals in human care. The aim of the study was to test the hypothesis of whether an increase in stimulus density leads to an increase in activity and behavioural diversity and, thus, an increase in welfare. For this purpose, 18 leopard geckos were fed insects that were ≤1 cm in size, and both the quantity and quality of behaviour was documented and analysed in the pre-intervention, intervention and post-intervention stages. In addition, it was of interest whether behavioural indicators could be identified that indicate a state of positive well-being. The results showed that this type of enrichment led to a quantitative doubling of the activity levels from the baseline (total of 12,519 behavioural elements) to the intervention (total of 25,366 behavioural elements). And even 11 months after the introduction of small insect feeding (post-intervention total of 23,267 behavioural elements), the activity level was still significantly increased. The behavioural diversity, as the absolute number of behavioural categories across all 18 leopard geckos, also increased, although less than the behavioural intensity, between the baseline (5507 behavioural categories) and intervention (6451 behavioural categories) and between the baseline and post-intervention (6079 behavioural categories). The results clearly show that feeding small insects to leopard geckos is a very efficient tool to increase the welfare of leopard geckos. Attractively, this feeding regime can be implemented by any leopard gecko keeper without significant additional cost or time, and therefore, these methods have a potentially high impact.
Collapse
Affiliation(s)
- Frank Krönke
- Auffangstation für Reptilien e.V. München, Rescue Center for Reptiles, Kaulbachstrasse 37, 80539 München, Germany
| | - Lisa Xu
- Statistical Consulting Unit, StaBLab, Department of Statistics, Ludwig-Maximilians-Universität, Ludwigstrasse 33, 80539 München, Germany
| |
Collapse
|
11
|
Tetzlaff SJ, Vizentin‐Bugoni J, Sperry JH, Davis MA, Clark RW, Repp RA, Schuett GW. Fission-fusion dynamics in the social networks of a North American pitviper. Ecol Evol 2023; 13:e10339. [PMID: 37554395 PMCID: PMC10405236 DOI: 10.1002/ece3.10339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Many animal species exist in fission-fusion societies, where the size and composition of conspecific groups change spatially and temporally. To help investigate such phenomena, social network analysis (SNA) has emerged as a powerful conceptual and analytical framework for assessing patterns of interconnectedness and quantifying group-level interactions. We leveraged behavioral observations via radiotelemetry and genotypic data from a long-term (>10 years) study on the pitviper Crotalus atrox (western diamondback rattlesnake) and used SNA to quantify the first robust demonstration of social network structures for any free-living snake. Group-level interactions among adults in this population resulted in structurally modular networks (i.e., distinct clusters of interacting individuals) for fidelis use of communal winter dens (denning network), mating behaviors (pairing network), and offspring production (parentage network). Although the structure of each network was similar, the size and composition of groups varied among them. Specifically, adults associated with moderately sized social groups at winter dens but often engaged in reproductive behaviors-both at and away from dens-with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population-interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.
Collapse
Affiliation(s)
- Sasha J. Tetzlaff
- U.S. Army ERDC‐CERLChampaignIllinoisUSA
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
| | - Jeferson Vizentin‐Bugoni
- Programa de Pós‐Graduação em Biologia Animal, Instituto de BiologiaUniversidade Federal de PelotasPelotasBrazil
| | - Jinelle H. Sperry
- U.S. Army ERDC‐CERLChampaignIllinoisUSA
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Mark A. Davis
- Illinois Natural History Survey, Prairie Research InstituteUniversity of Illinois Urbana‐ChampaignChampaignIllinoisUSA
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Rulon W. Clark
- Chiricahua Desert MuseumRodeoNew MexicoUSA
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | | | - Gordon W. Schuett
- Chiricahua Desert MuseumRodeoNew MexicoUSA
- Department of Biology, Neuroscience InstituteGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
12
|
Brando S, Norman M. Handling and Training of Wild Animals: Evidence and Ethics-Based Approaches and Best Practices in the Modern Zoo. Animals (Basel) 2023; 13:2247. [PMID: 37508025 PMCID: PMC10375971 DOI: 10.3390/ani13142247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
There is an ethical responsibility to provide all animals living in human care with optimal and positive well-being. As animals living in zoos and aquariums frequently interact with their human caregivers as part of their daily care routines, it is both relevant and essential to consider the impact of these interactions on animal well-being. Allowing animals to have choice and control in multiple areas of their lives, such as by providing opportunities for them to voluntarily participate in their own care through, for example, positive reinforcement training, is an essential component of good animal well-being programs. This review aims to describe evidence-based approaches, ethics, and best practices in the handling and training of the many taxa held in zoos and aquariums worldwide, drawing from work in related animal care fields such as laboratories, farms, rescue, and sanctuaries. The importance of ongoing animal well-being assessments is discussed, with a particular focus on the need for continued review and refinement of processes and procedures pertaining to animal training and handling specifically. Review, enquiry, assessment, evaluation, and refinement will aim to dynamically support positive well-being for all animals.
Collapse
|
13
|
Bartolomé A, Carazo P, Font E. Environmental enrichment for reptiles in European zoos: Current status and perspectives. Anim Welf 2023; 32:e48. [PMID: 38487426 PMCID: PMC10936270 DOI: 10.1017/awf.2023.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 03/17/2024]
Abstract
Zoos and aquaria are paying increasing attention to environmental enrichment, which has proven an effective tool for the improvement of animal welfare. However, several ongoing issues have hampered progress in environmental enrichment research. Foremost among these is the taxonomic bias, which hinders our understanding of the value of enrichment for neglected groups, such as reptiles. In this study, we evaluated the status of environmental enrichment for reptiles in European zoos using a survey approach. A total of 121 zoos (32% response rate) completed our main survey, focusing on the use of different enrichment types for reptiles. We found significant differences in the use and/or type of enrichment between reptile groups. Tortoises (family Testudinidae) and monitor lizards (genus Varanus) were the most enriched taxa while venomous snakes were the least. The enrichment types most used across taxa were structural/habitat design and dietary. A second, more detailed, questionnaire followed, where participants were questioned about specific enrichment techniques. A total of 42 enrichment methods were reported, with two being represented across all taxa: increasing structural/thermal complexity and enrichment objects. Finally, we present information from participating zoos on enrichment goals, assessment methods, sources of information for enrichment ideas, and whether enrichment for reptiles is considered essential and/or implemented routinely. Results suggest that, although usage is widespread across European zoos, our understanding of enrichment for reptiles needs to be re-evaluated, since many of the techniques reported tread a fine line between basic husbandry and actual enrichment.
Collapse
Affiliation(s)
- Alicia Bartolomé
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Pau Carazo
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Enrique Font
- Ethology lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| |
Collapse
|
14
|
Sun X, Piao Y, Wang T, Wang J, Fu J, Cui J. Keep numbers in view: red-eared sliders ( Trachemys scripta elegans) learn to discriminate relative quantities. Biol Lett 2023; 19:20230203. [PMID: 37465912 PMCID: PMC10354689 DOI: 10.1098/rsbl.2023.0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
The ability to discriminate relative quantities, one of the numerical competences, is considered an adaptive trait in uncertain environments. Besides humans, previous studies have reported this capacity in several non-human primates and birds. Here, we test whether red-eared sliders (Trachemys scripta elegans) can discriminate different relative quantities. Subjects were first trained to distinguish different stimuli with food reward. Then, they were tested with novel stimulus pairs to demonstrate how they distinguished the stimuli. The results show that most subjects can complete the initial training and use relative quantity rather than absolute quantity to make choices during the testing phase. This study provides behavioural evidence of relative quantity discrimination in a reptile species and suggests that such capacity may be widespread among vertebrates.
Collapse
Affiliation(s)
- Xiaoqian Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Science, Beijing 100049, People's Republic of China
| | - Yige Piao
- Wildlife Research Center, Kyoto University, Kyoto 606-8203, Japan
| | - Tongliang Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- Departments of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jianguo Cui
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| |
Collapse
|
15
|
Grossman P. FUNDAMENTAL CHALLENGES AND LIKELY REFUTATIONS OF THE FIVE BASIC PREMISES OF THE POLYVAGAL THEORY. Biol Psychol 2023:108589. [PMID: 37230290 DOI: 10.1016/j.biopsycho.2023.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The polyvagal collection of hypotheses is based upon five essential premises, as stated by its author (Porges, 2011). Polyvagal conjectures rest on a primary assumption that the brainstem ventral and dorsal regions in mammals each have their own unique mediating effects upon vagal control of heart rate. The polyvagal hypotheses link these putative dorsal- vs. ventral-vagal differences to socioemotional behavior (e.g. defensive immobilization, and social affiliative behaviors, respectively), as well as to trends in the evolution of the vagus nerve (e.g. Porges, 2011 & 2021a). Additionally, it is essential to note that only one measurable phenomenon-as index of vagal processes-serves as the linchpin for virtually every premise. That phenomenon is respiratory sinus arrhythmia (RSA), heart-rate changes coordinated to phase of respiration (i.e. inspiration vs. expiration), often employed as an index of vagally, or parasympathetically, mediated control of heart rate. The polyvagal hypotheses assume that RSA is a mammalian phenomenon, since Porges (2011) states "RSA has not been observed in reptiles." I will here briefly document how each of these basic premises have been shown to be either untenable or highly implausible based on the available scientific literature. I will also argue that the polyvagal reliance upon RSA as equivalent to general vagal tone or even cardiac vagal tone is conceptually a category mistake (Ryle, 1949), confusing an approximate index (i.e. RSA) of a phenomenon (some general vagal process) with the phenomenon, itself.
Collapse
Affiliation(s)
- Paul Grossman
- Department of Psychosomatic Medicine University Hospital Basel, Switzerland.
| |
Collapse
|
16
|
Krochmal AR, Roth TC. The case for investigating the cognitive map in nonavian reptiles. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Karpiński M, Czyżowski P, Beeger S, Flis M. Hematological and Serum Biochemical Values of Free-Ranging Roe Deer ( Capreolus capreolus) in Poland. Animals (Basel) 2023; 13:ani13020242. [PMID: 36670782 PMCID: PMC9854974 DOI: 10.3390/ani13020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
This study presents the hematological and serum biochemical values of physically captured roe deer (Capreolus capreolus). The study material was blood sampled from roe deer captured with the use of a specialist trap mesh and no anesthesia. Blood samples were collected from 122 roe deer from January to April in 2016, 2017, and 2018 in the Lublin region of Poland. The hematological and biochemical variables were determined with results showing statistically significant differences between the mean values of RBC, HCT, and HB according to sex. Reference intervals should be more specific to the broad physical versus chemical capture categories.
Collapse
|
18
|
Rowell MK, Rymer TL. Problem solving of wild animals in the Wet Tropics of Queensland, Australia. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Misha K. Rowell
- College of Science and Engineering James Cook University Cairns Queensland Australia
- Centre for Tropical Environmental and Sustainability Sciences James Cook University Cairns Queensland Australia
| | - Tasmin L. Rymer
- College of Science and Engineering James Cook University Cairns Queensland Australia
- Centre for Tropical Environmental and Sustainability Sciences James Cook University Cairns Queensland Australia
| |
Collapse
|
19
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
20
|
Nieder A. In search for consciousness in animals: Using working memory and voluntary attention as behavioral indicators. Neurosci Biobehav Rev 2022; 142:104865. [PMID: 36096205 DOI: 10.1016/j.neubiorev.2022.104865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
Whether animals have subjective experiences about the content of their sensory input, i.e., whether they are aware of stimuli, is a notoriously difficult question to answer. If consciousness is present in animals, it must share fundamental characteristics with human awareness. Working memory and voluntary/endogenous attention are suggested as diagnostic features of conscious awareness. Behavioral evidence shows clear signatures of both working memory and voluntary attention as minimal criterium for sensory consciousness in mammals and birds. In contrast, reptiles and amphibians show no sign of either working memory or volitional attention. Surprisingly, some species of teleost fishes exhibit elementary working memory and voluntary attention effects suggestive of possibly rudimentary forms of subjective experience. With the potential exception of honeybees, evidence for conscious processing is lacking in invertebrates. These findings suggest that consciousness is not ubiquitous in the animal kingdom but also not exclusive to humans. The phylogenetic gap between animal taxa argues that evolution does not rely on specific neural substrates to endow distantly related species with basic forms of consciousness.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
21
|
Personality assessment of headstart Texas horned lizards (Phrynosoma cornutum) in human care prior to release. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Bisazza A, Santacà M. Zebrafish excel in number discrimination under an operant conditioning paradigm. Anim Cogn 2022; 25:917-933. [PMID: 35179665 PMCID: PMC9334370 DOI: 10.1007/s10071-022-01602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/23/2022] [Indexed: 12/26/2022]
Abstract
Numerical discrimination is widespread in vertebrates, but this capacity varies enormously between the different species examined. The guppy (Poecilia reticulata), the only teleost examined following procedures that allow a comparison with the other vertebrates, outperforms amphibians, reptiles and many warm-blooded vertebrates, but it is unclear whether this is a feature shared with the other teleosts or represents a peculiarity of this species. We trained zebrafish (Danio rerio) to discriminate between numbers differing by one unit, varying task difficulty from 2 versus 3 to 5 versus 6 items. Non-numerical variables that covary with number, such as density or area, did not affect performance. Most fish reached learning criterion on all tasks up to 4 versus 5 discrimination with no sex difference in accuracy. Although no individual reached learning criterion in the 5 versus 6 task, performance was significant at the group level, suggesting that this may represent the discrimination threshold for zebrafish. Numerosity discrimination abilities of zebrafish compare to those of guppy, being higher than in some warm-blooded vertebrates, such as dogs, horses and domestic fowl, though lower than in parrots, corvids and primates. Learning rate was similar in a control group trained to discriminate between different-sized shapes, but zebrafish were slightly more accurate when discriminating areas than numbers and males were more accurate than females. At the end of the experiment, fish trained on numbers and controls trained on areas generalized to the reciprocal set of stimuli, indicating they had used a relational strategy to solve these tasks.
Collapse
Affiliation(s)
- Angelo Bisazza
- Department of General Psychology, University of Padova, Padua, Italy.,Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Maria Santacà
- Department of Biology, University of Padova, Viale Giuseppe Colombo 3-Via Ugo Bassi 58/B, 35131, Padua, Italy.
| |
Collapse
|
23
|
Szabo B, Whiting MJ. A new protocol for investigating visual two-choice discrimination learning in lizards. Anim Cogn 2022; 25:935-950. [PMID: 35124743 PMCID: PMC9334418 DOI: 10.1007/s10071-022-01603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022]
Abstract
One of the most widely studied abilities in lizards is discrimination learning. The protocols used to test lizards are often novel or adapted from other taxa without proper validation. We need to ensure that tests of discrimination learning are appropriate and properly applied in lizards so that robust inferences can be made about cognitive ability. Here, we present a new protocol for testing lizard discrimination learning that incorporates a target training procedure, uses many daily trials for efficiency and reinforcement, and has a robust, validated, learning criterion. We trained lizards to touch a cue card using operant conditioning and tested lizards separately on a colour, and pattern discrimination test. Lizards successfully learnt to touch a cue card and to discriminate between light and dark blue but had issues discriminating the patterns. After modifying the test procedure, some lizards reached criterion, revealing possible issues with stimulus processing and interference of generalisation. Here, we describe a protocol for operant conditioning and two-choice discrimination learning in lizards with a robust learning criterion that can help researcher better design future studies on discrimination learning in lizards.
Collapse
|
24
|
Mohanty NP, Wagener C, Herrel A, Thaker M. The ecology of sleep in non-avian reptiles. Biol Rev Camb Philos Soc 2021; 97:505-526. [PMID: 34708504 DOI: 10.1111/brv.12808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023]
Abstract
Sleep is ubiquitous in the animal kingdom and yet displays considerable variation in its extent and form in the wild. Ecological factors, such as predation, competition, and microclimate, therefore are likely to play a strong role in shaping characteristics of sleep. Despite the potential for ecological factors to influence various aspects of sleep, the ecological context of sleep in non-avian reptiles remains understudied and without systematic direction. In this review, we examine multiple aspects of reptilian sleep, including (i) habitat selection (sleep sites and their spatio-temporal distribution), (ii) individual-level traits, such as behaviour (sleep postures), morphology (limb morphometrics and body colour), and physiology (sleep architecture), as well as (iii) inter-individual interactions (intra- and inter-specific). Throughout, we discuss the evidence of predation, competition, and thermoregulation in influencing sleep traits and the possible evolutionary consequences of these sleep traits for reptile sociality, morphological specialisation, and habitat partitioning. We also review the ways in which sleep ecology interacts with urbanisation, biological invasions, and climate change. Overall, we not only provide a systematic evaluation of the conceptual and taxonomic biases in the existing literature on reptilian sleep, but also use this opportunity to organise the various ecological hypotheses for sleep characteristics. By highlighting the gaps and providing a prospectus of research directions, our review sets the stage for understanding sleep ecology in the natural world.
Collapse
Affiliation(s)
- Nitya P Mohanty
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| | - Carla Wagener
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, 7600, South Africa
| | - Anthony Herrel
- Département Adaptations du Vivant, MECADEV UMR7179 CNRS/MNHN, Paris, France
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
25
|
Lin FC, Whiting MJ, Hsieh MY, Shaner PJL, Lin SM. Superior continuous quantity discrimination in a freshwater turtle. Front Zool 2021; 18:49. [PMID: 34563231 PMCID: PMC8466656 DOI: 10.1186/s12983-021-00431-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantity discrimination, the ability to discriminate a magnitude of difference or discrete numerical information, plays a key role in animal behavior. While quantitative ability has been well documented in fishes, birds, mammals, and even in previously unstudied invertebrates and amphibians, it is still poorly understood in reptiles and has never been tested in an aquatic turtle despite the fact that evidence is accumulating that reptiles possess cognitive skills and learning ability. To help address this deficiency in reptiles, we investigated the quantitative ability of an Asian freshwater turtle, Mauremys sinensis, using red cubes on a white background in a trained quantity discrimination task. While spontaneous quantity discrimination methods are thought to be more ecologically relevant, training animals on a quantity discrimination task allows more comparability across taxa. RESULTS We assessed the turtles' quantitative performance in a series of tests with increasing quantity ratios and numerosities. Surprisingly, the turtles were able to discriminate quantities of up to 9 versus 10 (ratio = 0.9), which shows a good quantitative ability that is comparable to some endotherms. Our results showed that the turtles' quantitative performance followed Weber's law, in which success rate decreased with increasing quantity ratio across a wide range of numerosities. Furthermore, the gradual improvement of their success rate across different experiments and phases suggested that the turtles possess learning ability. CONCLUSIONS Reptile quantitative ability has long been ignored and therefore is likely under-estimated. More comparative research on numerical cognition across a diversity of species will greatly contribute to a clearer understanding of quantitative ability in animals and whether it has evolved convergently in diverse taxa.
Collapse
Affiliation(s)
- Feng-Chun Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Pei-Jen Lee Shaner
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
26
|
De Meester G, Baeckens S. Reinstating reptiles: from clueless creatures to esteemed models of cognitive biology. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-00003718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Non-avian reptiles have long been neglect in cognitive science due to their reputation as slow and inflexible learners, but fortunately, this archaic view on reptile cognition is changing rapidly. The last two decades have witnessed a renewed interest in the cognitive capacities of reptiles, and more ecologically relevant protocols have been designed to measure such abilities. Now, we appreciate that reptiles possess an impressive set of cognitive skills, including problem-solving abilities, fast and flexible learning, quantity discrimination, and even social learning. This special issue highlights current research on reptiles in cognitive biology and showcases the diversity of research questions that can be answered by using reptiles as study model. Here, we briefly address (the key results of) the contributing articles and their role in the endeavour for total inclusion of reptiles in cognitive biological research, which is instrumental for our understanding of the evolution of animal cognition. We also discuss and illustrate the promising potential of reptiles as model organisms in various areas of cognitive research.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| |
Collapse
|
27
|
Sakata JT, Catalano I, Woolley SC. Mechanisms, development, and comparative perspectives on experience-dependent plasticity in social behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:35-49. [PMID: 34516724 DOI: 10.1002/jez.2539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022]
Abstract
Revealing the mechanisms underlying experience-dependent plasticity is a hallmark of behavioral neuroscience. While the study of social behavior has focused primarily on the neuroendocrine and neural control of social behaviors, the plasticity of these innate behaviors has received relatively less attention. Here, we review studies on mating-dependent changes to social behavior and neural circuitry across mammals, birds, and reptiles. We provide an overview of species similarities and differences in the effects of mating experiences on motivational and performative aspects of sexual behaviors, on sensory processing and preferences, and on the experience-dependent consolidation of sexual behavior. We also discuss recent insights into the neural mechanisms of and developmental influences on mating-dependent changes and outline promising approaches to investigate evolutionary parallels and divergences in experience-dependent plasticity.
Collapse
Affiliation(s)
- Jon T Sakata
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada
| | - Isabella Catalano
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
28
|
A fully segmented 3D anatomical atlas of a lizard brain. Brain Struct Funct 2021; 226:1727-1741. [PMID: 33929568 DOI: 10.1007/s00429-021-02282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
As the relevance of lizards in evolutionary neuroscience increases, so does the need for more accurate anatomical references. Moreover, the use of magnetic resonance imaging (MRI) in evolutionary neuroscience is becoming more widespread; this represents a fundamental methodological shift that opens new avenues of investigative possibility but also poses new challenges. Here, we aim to facilitate this shift by providing a three-dimensional segmentation atlas of the tawny dragon brain. The tawny dragon (Ctenophorus decresii) is an Australian lizard of increasing importance as a model system in ecology and, as a member of the agamid lizards, in evolution. Based on a consensus average 3D image generated from the MRIs of 13 male tawny dragon heads, we identify and segment 224 structures visible across the entire lizard brain. We describe the relevance of this atlas to the field of evolutionary neuroscience and propose further experiments for which this atlas can provide the foundation. This advance in defining lizard neuroanatomy will facilitate numerous studies in evolutionary neuroscience. The atlas is available for download as a supplementary material to this manuscript and through the Open Science Framework (OSF; https://doi.org/10.17605/OSF.IO/UJENQ ).
Collapse
|
29
|
Rowell MK, Pillay N, Rymer TL. Problem Solving in Animals: Proposal for an Ontogenetic Perspective. Animals (Basel) 2021; 11:866. [PMID: 33803609 PMCID: PMC8002912 DOI: 10.3390/ani11030866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Problem solving, the act of overcoming an obstacle to obtain an incentive, has been studied in a wide variety of taxa, and is often based on simple strategies such as trial-and-error learning, instead of higher-order cognitive processes, such as insight. There are large variations in problem solving abilities between species, populations and individuals, and this variation could arise due to differences in development, and other intrinsic (genetic, neuroendocrine and aging) and extrinsic (environmental) factors. However, experimental studies investigating the ontogeny of problem solving are lacking. Here, we provide a comprehensive review of problem solving from an ontogenetic perspective. The focus is to highlight aspects of problem solving that have been overlooked in the current literature, and highlight why developmental influences of problem-solving ability are particularly important avenues for future investigation. We argue that the ultimate outcome of solving a problem is underpinned by interacting cognitive, physiological and behavioural components, all of which are affected by ontogenetic factors. We emphasise that, due to the large number of confounding ontogenetic influences, an individual-centric approach is important for a full understanding of the development of problem solving.
Collapse
Affiliation(s)
- Misha K. Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Tasmin L. Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| |
Collapse
|