1
|
Méndez DS, Ramos-Zapata J, Estrada-Medina H, Carmona D. Making partners in the city: impact of urban soil P enrichment on the partnership between an invasive herb and arbuscular mycorrhizal fungi in a tropical city. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:51-62. [PMID: 37937739 DOI: 10.1111/plb.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/24/2023] [Indexed: 11/09/2023]
Abstract
The mutualistic relationship between plants and arbuscular mycorrhizal (AM) fungi is essential for optimal plant nutrition, enabling plants to better withstand biotic and abiotic stressors and enhancing survival, reproduction, and colonization of new environments. Activities, such as soil enrichment or compaction, may decrease the benefits of AM fungi for plants, potentially reducing interactions in urban environments. Here, we examine this prediction by studying how urbanization alters AM interactions with the invasive herb Ruellia nudiflora (Acanthaceae). We collected soil and plants from deep urban sites (DUS; e.g., sidewalks), open urban sites (OUS; parks), and rural sites (RS) to analyse soil nutrient content, plant morphology, AM colonization rates, spore density, richness, and diversity. Contrary to predicted, DUS had the lowest soil nutrient concentration, except for phosphorus, reducing AM colonization. This supports the prediction of reduced AM interactions in urban environments. We also found that potassium affects the AM association. Urban plants had smaller and more compact root systems compared to their rural counterparts, but there were no discernible differences in AM fungi communities between urban and rural environments. Phosphorus enrichment in sidewalks is the main driver of reductionof R. nudiflora-AM fungi interactions in Mérida. More studies are needed to gain a better understanding of how AM fungi contribute to plant colonization in urban environments.
Collapse
Affiliation(s)
- D S Méndez
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - J Ramos-Zapata
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - H Estrada-Medina
- Departamento de Manejo y Conservación de Recursos Naturales, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - D Carmona
- Departamento de Ecología Tropical, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
2
|
Tang S, Liu J, Gilliam FS, Hietz P, Wang Z, Lu X, Zeng F, Wen D, Hou E, Lai Y, Fang Y, Tu Y, Xi D, Huang Z, Zhang D, Wang R, Kuang Y. Drivers of foliar 15 N trends in southern China over the last century. GLOBAL CHANGE BIOLOGY 2022; 28:5441-5452. [PMID: 35653265 DOI: 10.1111/gcb.16285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Foliar stable nitrogen (N) isotopes (δ15 N) generally reflect N availability to plants and have been used to infer about changes thereof. However, previous studies of temporal trends in foliar δ15 N have ignored the influence of confounding factors, leading to uncertainties on its indication to N availability. In this study, we measured foliar δ15 N of 1811 herbarium specimens from 12 plant species collected in southern China forests from 1920 to 2010. We explored how changes in atmospheric CO2 , N deposition and global warming have affected foliar δ15 N and N concentrations ([N]) and identified whether N availability decreased in southern China. Across all species, foliar δ15 N significantly decreased by 0.82‰ over the study period. However, foliar [N] did not decrease significantly, implying N homeostasis in forest trees in the region. The spatiotemporal patterns of foliar δ15 N were explained by mean annual temperature (MAT), atmospheric CO2 ( P CO 2 ), atmospheric N deposition, and foliar [N]. The spatiotemporal trends of foliar [N] were explained by MAT, temperature seasonality, P CO 2 , and N deposition. N deposition within the rates from 5.3 to 12.6 kg N ha-1 year-1 substantially contributed to the temporal decline in foliar δ15 N. The decline in foliar δ15 N was not accompanied by changes in foliar [N] and therefore does not necessarily reflect a decline in N availability. This is important to understand changes in N availability, which is essential to validate and parameterize biogeochemical cycles of N.
Collapse
Affiliation(s)
- Songbo Tang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Liu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Frank S Gilliam
- Department of Biology, University of West Florida, Pensacola, Florida, USA
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiankai Lu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Feiyan Zeng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dazhi Wen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Enqing Hou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
| | - Yuan Lai
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Ying Tu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Dan Xi
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhiqun Huang
- College of Geographical Sciences, Fujian Normal University, Fuzhou, China
| | - Dianxiang Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rong Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yuanwen Kuang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
3
|
Li Y, Sun H, Tomasetto F, Jiang J, Luan Q. Spectrometric Prediction of Nitrogen Content in Different Tissues of Slash Pine Trees. PLANT PHENOMICS (WASHINGTON, D.C.) 2022; 2022:9892728. [PMID: 35112084 PMCID: PMC8777469 DOI: 10.34133/2022/9892728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The internal cycling of nitrogen (N) storage and consumption in trees is an important physiological mechanism associated with tree growth. Here, we examined the capability of near-infrared spectroscopy (NIR) to quantify the N concentration across tissue types (needle, trunk, branch, and root) without time and cost-consuming. The NIR spectral data of different tissues from slash pine trees were collected, and the N concentration in each tissue was determined using standard analytical method in laboratory. Partial least squares regression (PLSR) models were performed on a set of training data randomly selected. The full-length spectra and the significant multivariate correlation (sMC) variable selected spectra were used for model calibration. Branch, needle, and trunk PLSR models performed well for the N concentration using both full length and sMC selected NIR spectra. The generic model preformatted a reliable accuracy with R2 C and R2 CV of 0.62 and 0.66 using the full-length spectra, and 0.61 and 0.65 using sMC-selected spectra, respectively. Individual tissue models did not perform well when being used in other tissues. Five significantly important regions, i.e., 1480, 1650, 1744, 2170, and 2390 nm, were found highly related to the N content in plant tissues. This study evaluates a rapid and efficient method for the estimation of N content in different tissues that can help to serve as a tool for tree N storage and recompilation study.
Collapse
Affiliation(s)
- Yanjie Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | | | - Jingmin Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Qifu Luan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
4
|
Liu J, Sun Y, Liu W, Tan Z, Jiang J, Li Y. Association of spectroscopically determined leaf nutrition related traits and breeding selection in Sassafras tzumu. PLANT METHODS 2021; 17:33. [PMID: 33789705 PMCID: PMC8010991 DOI: 10.1186/s13007-021-00734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant traits related to nutrition have an influential role in tree growth, tree production and nutrient cycling. Therefore, the breeding program should consider the genetics of the traits. However, the measurement methods could seriously affect the progress of breeding selection program. In this study, we tested the ability of spectroscopy to quantify the specific leaf nutrition traits including anthocyanins (ANTH), flavonoids (FLAV) and nitrogen balance index (NBI), and estimated the genetic variation of these leaf traits based on the spectroscopic predicted data. Fresh leaves of Sassafras tzumu were selected for spectral collection and ANTH, FLAV and NBI concentrations measurement by standard analytical methods. Partial least squares regression (PLSR), five spectra pre-processing methods, and four variable selection algorisms were conducted for the optimal model selection. Each trait model was simulated 200 times for error estimation. RESULTS The standard normal variate (SNV) to the ANTH model and 1st derivatives to the FLAV and NBI models, combined with significant Multivariate Correlation (sMC) algorithm variable selection are finally regarded as the best performance models. The ANTH model produced the highest accuracy of prediction with a mean R2 of 0.72 and mean RMSE of 0.10%, followed by FLAV and NBI model (mean R2 of 0.58, mean RMSE of 0.11% and mean R2 of 0.44, mean RMSE of 0.04%). High heritability was found for ANTH, FLAV and NBI with h2 of 0.78, 0.58 and 0.61 respectively. It shows that it is beneficial and possible for breeding selection to the improvement of leaf nutrition traits. CONCLUSIONS Spectroscopy can successfully characterize the leaf nutrition traits in living tree leaves and the ability to simultaneous multiple plant traits provides a promising and high-throughput tool for the quick analysis of large size samples and serves for genetic breeding program.
Collapse
Affiliation(s)
- Jun Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, Zhejiang, China
| | - Yang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, Zhejiang, China
- College of Forestry, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Wenjian Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, Zhejiang, China
| | - Zifeng Tan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, Zhejiang, China
| | - Jingmin Jiang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, Zhejiang, China
| | - Yanjie Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, 311400, Zhejiang, China.
| |
Collapse
|
5
|
Effects of Initial Soil Properties on Three-Year Performance of Six Tree Species in Tropical Dry Forest Restoration Plantings. FORESTS 2019. [DOI: 10.3390/f10050428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Deforestation of tropical dry forest reduces soil fertility, with negative effects on future restoration intervention. To evaluate the effect of initial soil properties on three-year performance of six tree species in restoration settings, we measured C, N, and P contents in topsoils of 48 plots under minimal (exclusions of livestock grazing) and maximal (plantings of six native species) restoration intervention during two years in tropical dry forest in central Mexico. Survival and height and diameter relative growth rates were evaluated by species and by growth rank (three fast- and three slow-growing species). After two years, organic C and the C:N ratio increased early during natural succession; these increases might be related to high density of N2-fixing recruits at both intervention levels. Changes in N availability for plants (i.e., NO3− and NH4+ contents) occurred after cattle exclusion. After 40 months, the fast-growing legume Leucaena esculenta (DC.) Benth. had the highest survival (65.55%) and relative growth rate in both height (3.16%) and diameter (5.67%). Fast-growing species had higher survival and diameter growth rates than slow-growing species. Higher diameter growth rates for fast-growing species may be associated with a higher ability to forage for soil resources, whereas similar height growth rates for slow and fast-growing species suggested low competition for light due to slow natural succession at the site. Planted seedlings had higher survival possibly due to initial high NO3− content in the soil. Also, fast-growing species seem to benefit from initially higher pH in the soil. Both soil properties (i.e., pH and NO3−) may be augmented to favor the performance of fast-growing species in restoration plantings and to further accelerate soil recovery in tropical dry forests.
Collapse
|