1
|
Abstract
DNA methylation of promoter CpG islands silences their downstream genes, and enhancer methylation can be associated with decreased or increased gene expression. DNA methylation alterations in normal and diseased cells provide rich information, such as tissue origin, disease risk, patient response, and prognosis. DNA methylation status is detected by bisulfite conversion, which converts unmethylated cytosines into uracils but methylated cytosines very inefficiently. A genome-wide DNA methylation analysis is conducted by a BeadChip microarray or next-generation sequencing (NGS) of bisulfite-treated DNA. A region-specific DNA methylation analysis can be conducted by various methods, such as methylation-specific PCR (MSP), quantitative MSP, and bisulfite sequencing. This chapter provides protocols for bisulfite-mediated conversion, a BeadChip array-based method (Infinium), quantitative MSP, and bisulfite sequencing.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan.
| |
Collapse
|
2
|
Porphyromonas gingivalis-Derived Lipopolysaccharide Promotes Glioma Cell Proliferation and Migration via Activating Akt Signaling Pathways. Cells 2022; 11:cells11244088. [PMID: 36552854 PMCID: PMC9777333 DOI: 10.3390/cells11244088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is significantly associated with the risk of cancers in the lung and the digestive system. Emerging evidence shows a plausible link between periodontitis and several types of brain diseases. However, the association between periodontal infection and glioma remains unclear. In the cultured GL261 glioma cells, P. gingivalis lipopolysaccharide (LPS) significantly promoted cell proliferation at concentrations ranging from 10 to 1000 ng/mL. It promoted cell migration at a higher concentration (100 and 1000 ng/mL). Additionally, exposure to 100 ng/mL P. gingivalis LPS induced a significant increase in the expression of TNF-α, TGF-β, MMP2, and MMP9, as well as the phosphorylation level of Akt at Ser473. These changes induced by P. gingivalis LPS were significantly antagonized by the Akt inhibitor. Furthermore, a total of 48 patients with brain tumors were enrolled to investigate their periodontal status before receiving tumor management. Poor periodontal status [probing depth (PD) ≥ 6 mm and attachment loss (AL) >5 mm] was found in 42.9% (9/21) of patients with glioma, which was significantly higher than that in patients with benign tumors and the relevant data in the 4th National Oral Health Survey in China. The glioma patients with both AL > 5 mm and PD ≥ 6 mm had a higher ki-67 labeling index than those with AL ≤ 5 mm or PD < 6 mm. These findings support the association between periodontal infection and glioma progression.
Collapse
|
3
|
Bai Y, Qu D, Lu D, Li Y, Zhao N, Cui G, Li X, Sun X, Sun H, Zhao L, Li Q, Zhang Q, Han T, Wang S, Yang Y. Pan-cancer landscape of abnormal ctDNA methylation across human tumors. Cancer Genet 2022; 268-269:37-45. [PMID: 36152512 DOI: 10.1016/j.cancergen.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The aim of this paper is to explore the correlation between circulating tumor DNA (ctDNA) methylation and mutations and its value in clinical early cancer screening. METHODS We performed target region methylation sequencing and genome sequencing on plasma samples. Methylation models to distinguish cancer from healthy individuals have been developed using hypermethylated genes in tumors and validated in training set and prediction set. RESULTS We found that patients with cancer had higher levels of ctDNA methylation compared to healthy individuals. The level of ctDNA methylation in cell cycle, p53, Notch pathway in pan-cancer was significantly correlated with the number of mutations, and mutation frequency. Methylation burden in some tumors was significantly correlated with tumor mutational burden (TMB), microsatellite instability (MSI) and PD-L1. The ctDNA methylation differences in cancer patients were mainly concentrated in the Herpes simplex virus 1 infection pathway. The area under curve (AUC) of the training and prediction sets of the methylation model distinguishing cancer from healthy individuals were 0.93 and 0.92, respectively. CONCLUSION Our study provides a landscape of methylation levels of important pathways in pan-cancer. ctDNA methylation significantly correlates with mutation type, frequency and number, providing a reference for clinical application of ctDNA methylation in early cancer screening.
Collapse
Affiliation(s)
- Yun Bai
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Di Qu
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Dan Lu
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yiwen Li
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ning Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Guanghua Cui
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xue Li
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaoke Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Huaibo Sun
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Lihua Zhao
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Qingyuan Li
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | - Qi Zhang
- Genecast Biotechnology Co., Ltd, Wuxi 214104, China
| | | | - Song Wang
- Department of Medical Oncology, Mudanjiang Cancer Hospital, Mudanjiang 157009, China.
| | - Yu Yang
- Department of Medical Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
4
|
Takeshima H, Niwa T, Yamashita S, Takamura-Enya T, Iida N, Wakabayashi M, Nanjo S, Abe M, Sugiyama T, Kim YJ, Ushijima T. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest 2021; 130:5370-5379. [PMID: 32663196 DOI: 10.1172/jci124070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic inflammation is deeply involved in various human disorders, such as cancer, neurodegenerative disorders, and metabolic disorders. Induction of epigenetic alterations, especially aberrant DNA methylation, is one of the major mechanisms, but how it is induced is still unclear. Here, we found that expression of TET genes, methylation erasers, was downregulated in inflamed mouse and human tissues, and that this was caused by upregulation of TET-targeting miRNAs such as MIR20A, MIR26B, and MIR29C, likely due to activation of NF-κB signaling downstream of IL-1β and TNF-α. However, TET knockdown induced only mild aberrant methylation. Nitric oxide (NO), produced by NOS2, enhanced enzymatic activity of DNA methyltransferases (DNMTs), methylation writers, and NO exposure induced minimal aberrant methylation. In contrast, a combination of TET knockdown and NO exposure synergistically induced aberrant methylation, involving genomic regions not methylated by either alone. The results showed that a vicious combination of TET repression, due to NF-κB activation, and DNMT activation, due to NO production, is responsible for aberrant methylation induction in human tissues.
Collapse
Affiliation(s)
- Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Niwa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, Kanagawa, Japan
| | - Naoko Iida
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Wakabayashi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Sohachi Nanjo
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Masanobu Abe
- Department of Oral and Maxillofacial Surgery, University of Tokyo Hospital, Tokyo, Japan.,Division for Health Service Promotion, University of Tokyo, Tokyo, Japan
| | - Toshiro Sugiyama
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
5
|
Takeshima H, Ushijima T. Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol 2019; 3:7. [PMID: 30854468 PMCID: PMC6403339 DOI: 10.1038/s41698-019-0079-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cancers develop due to the accumulation of genetic and epigenetic alterations. Genetic alterations are induced by aging, mutagenic chemicals, ultraviolet light, and other factors; whereas, epigenetic alterations are mainly by aging and chronic inflammation. The accumulation and patterns of alterations in normal cells reflect our past exposure levels and life history. Most accumulated alterations are considered as passengers, but their accumulation is correlated with cancer drivers. This has been shown for aberrant DNA methylation but has only been speculated for genetic alterations. However, recent technological advancements have enabled measurement of rare point mutations, and studies have shown that their accumulation levels are indeed correlated with cancer risk. When the accumulation levels of aberrant DNA methylation and point mutations are combined, risk prediction becomes even more accurate. When high levels of alterations accumulate, the tissue has a high risk of developing cancer or even multiple cancers and is considered as a “cancerization field”, with or without expansion of physiological patches of clonal cells. In this review, we describe the formation of a cancerization field and how we can apply its detection in precision cancer risk diagnosis.
Collapse
Affiliation(s)
- Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045 Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, 104-0045 Tokyo, Japan
| |
Collapse
|
6
|
Hattori N, Niwa T, Ishida T, Kobayashi K, Imai T, Mori A, Kimura K, Mori T, Asami Y, Ushijima T. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci 2018; 110:147-156. [PMID: 30443963 PMCID: PMC6317928 DOI: 10.1111/cas.13880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation is involved in the development of colon cancer by inducing mutations and aberrant DNA methylation in colon epithelial cells. Furthermore, there is growing evidence that colonic microbiota modulates the inflammation response in the host and influences colon tumorigenesis. However, the influence of colonic microbiota on aberrant DNA methylation remains unknown. Here, we show the effect of colonic microbes on DNA methylation and tumorigenicity using a mouse model of human ulcerative colitis. Mice treated with azoxymethane (AOM) and dextran sulfate sodium (DSS) showed an increase in degree of colitis, as estimated by body weight, occult blood, and stool consistency/diarrhea at 2 weeks after treatment, but treatment with antibiotics markedly reduced the severity of the colitis. Although mucosal hyperplasia and increased inflammation‐related genes were observed in the colonic epithelial cells of the AOM/DSS‐treated mice, treatment with antibiotics abrogated these changes. In addition, treatment with antibiotics significantly decreased the number of mucosal nodules from 5.9 ± 5.3 to 0.2 ± 0.6 (P < .01) and area of occupancy from 50.1 ± 57.4 to 0.5 ± 1.4 mm2 (P < .01). Aberrant DNA methylation of three marker CpG islands (Cbln4, Fosb, and Msx1) was induced by AOM/DSS treatment in colonic mucosae, but this increase was suppressed by 50%‐92% (P < .05) with antibiotic treatment. Microbiome analysis showed that this change was associated with a decrease of the Clostridium leptum subgroup. These data indicate that antibiotics suppressed tumorigenesis through inhibition of aberrant DNA methylation induced by chronic inflammation.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Niwa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Mori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Kimura
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Mori
- Communication Division, Meiji Co., Ltd, Tokyo, Japan
| | | | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
7
|
Novel epigenetic markers for gastric cancer risk stratification in individuals after Helicobacter pylori eradication. Gastric Cancer 2018; 21:745-755. [PMID: 29427040 DOI: 10.1007/s10120-018-0803-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The risk stratification of healthy individuals after Helicobacter pylori eradication is an urgent issue. The assessment of aberrant DNA methylation accumulated in gastric tissues with normal appearance, which can reflect overall epigenomic damage, is a promising strategy. We aimed to establish novel epigenetic cancer risk markers for H. pylori-eradicated individuals. METHODS Gastric mucosa was collected from eight healthy volunteers without H. pylori infection (G1), 75 healthy individuals with gastric atrophy (G2), and 94 gastric cancer patients (G3) after H. pylori eradication. Genome-wide analysis was conducted using Infinium 450 K and differentially methylated probes were screened using large difference and iEVORA-based methods. Bisulfite pyrosequencing was used for validation. RESULTS Screening, using 8 G1, 12 G2, and 12 G3 samples, isolated 57 candidates unmethylated in G1 and differentially methylated in G3 compared with G2. Validation for nine candidate markers (FLT3, LINC00643, RPRM, JAM2, ELMO1, BHLHE22, RIMS1, GUSBP5, and ZNF3) in 63 G2 and 82 G3 samples showed that all of them had significantly higher methylation levels in G3 than in G2 (P < 0.0001). Their methylation levels were highly correlated, which indicated that they reflect overall epigenomic damage. The candidates had sufficient performance (AUC: 0.70-0. 80) and high odds ratios (5.43-23.41), some of which were superior to a previous marker, miR-124a-3. The methylation levels of our novel markers were not associated with gastric atrophy, gender, or age. CONCLUSIONS Novel epigenetic markers for gastric cancer risk optimized for H. pylori-eradicated individuals were established.
Collapse
|
8
|
Genetic and epigenetic alterations in normal tissues have differential impacts on cancer risk among tissues. Proc Natl Acad Sci U S A 2018; 115:1328-1333. [PMID: 29358395 DOI: 10.1073/pnas.1717340115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic and epigenetic alterations are both involved in carcinogenesis, and their low-level accumulation in normal tissues constitutes cancer risk. However, their relative importance has never been examined, as measurement of low-level mutations has been difficult. Here, we measured low-level accumulations of genetic and epigenetic alterations in normal tissues with low, intermediate, and high cancer risk and analyzed their relative effects on cancer risk in the esophagus and stomach. Accumulation of genetic alterations, estimated as a frequency of rare base substitution mutations, significantly increased according to cancer risk in esophageal mucosae, but not in gastric mucosae. The mutation patterns reflected the exposure to lifestyle risk factors. In contrast, the accumulation of epigenetic alterations, measured as DNA methylation levels of marker genes, significantly increased according to cancer risk in both tissues. Patients with cancer (high-risk individuals) were precisely discriminated from healthy individuals with exposure to risk factors (intermediate-risk individuals) by a combination of alterations in the esophagus (odds ratio, 18.2; 95% confidence interval, 3.69-89.9) and by only epigenetic alterations in the stomach (odds ratio, 7.67; 95% confidence interval, 2.52-23.3). The relative importance of epigenetic alterations upon genetic alterations was 1.04 in the esophagus and 2.31 in the stomach. The differential impacts among tissues will be critically important for effective cancer prevention and precision cancer risk diagnosis.
Collapse
|
9
|
Abstract
Induction of aberrant DNA methylation is one of the most important mechanisms mediating the effect of inflammation on cancer development. Aberrant methylation of promoter CpG islands of tumor suppressor genes can silence their downstream genes, and that in cancer tissues is associated with prognosis or therapeutic effects. In addition, aberrant methylation can occur in tissues exposed to specific types of inflammation, producing a so-called "epigenetic field for cancerization," and its accumulation is correlated with cancer risk. Thus, aberrant methylation at specific loci is an important biomarker and mediator of the carcinogenic effect of inflammation. DNA methylation at specific genomic regions can be analyzed by various methods based upon bisulfite-mediated DNA conversion, which specifically converts unmethylated cytosines into uracils under appropriate conditions. Methylation-specific PCR (MSP), quantitative MSP, and bisulfite sequencing are widely used, and this chapter provides protocols for bisulfite-mediated conversion, quantitative MSP, and bisulfite sequencing.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
10
|
Takeshima H, Niwa T, Toyoda T, Wakabayashi M, Yamashita S, Ushijima T. Degree of methylation burden is determined by the exposure period to carcinogenic factors. Cancer Sci 2017; 108:316-321. [PMID: 27992956 PMCID: PMC5378290 DOI: 10.1111/cas.13136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 12/25/2022] Open
Abstract
Aberrant DNA methylation accumulated in normal tissues, namely methylation burden, is associated with risk of carcinogenesis. The levels of methylation burden are known to be influenced by multiple factors, such as genetic factors and strengths of carcinogenic factors. However, the impact of the degree of exposure to a carcinogenic factor is still unclear. Here, using a Mongolian gerbil model of Helicobacter pylori (H. pylori)‐induced gastritis, we aimed to clarify the impact of the degree of exposure on methylation burden in normal gastric tissues. DNA methylation levels of four CpG islands, HE6, SA9, SB5, and SD2, increased by H. pylori infection, depending upon the infection period. After eradication of H. pylori, DNA methylation levels decreased, but tended to be higher in gastric mucosae with a longer infection period. DNA molecules with dense methylation, but not those with sparse methylation, increased depending upon the infection period. DNA methylation levels of one of the four CpG islands, SA9, tended to be higher in gastric mucosae of gerbils infected with H. pylori, even 50 weeks after eradication than in those of non‐infected gerbils. These results showed for the first time that the levels of methylation burden in normal tissues are influenced by the degree of exposure to a carcinogenic factor.
Collapse
Affiliation(s)
- Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Niwa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Mika Wakabayashi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|