1
|
Du Y, Shi J, Wang J, Xun Z, Yu Z, Sun H, Bao R, Zheng J, Li Z, Ye Y. Integration of Pan-Cancer Single-Cell and Spatial Transcriptomics Reveals Stromal Cell Features and Therapeutic Targets in Tumor Microenvironment. Cancer Res 2024; 84:192-210. [PMID: 38225927 DOI: 10.1158/0008-5472.can-23-1418] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024]
Abstract
Stromal cells are physiologically essential components of the tumor microenvironment (TME) that mediates tumor development and therapeutic resistance. Development of a logical and unified system for stromal cell type identification and characterization of corresponding functional properties could help design antitumor strategies that target stromal cells. Here, we performed a pan-cancer analysis of 214,972 nonimmune stromal cells using single-cell RNA sequencing from 258 patients across 16 cancer types and analyzed spatial transcriptomics from 16 patients across seven cancer types, including six patients receiving anti-PD-1 treatment. This analysis uncovered distinct features of 39 stromal subsets across cancer types, including various functional modules, spatial locations, and clinical and therapeutic relevance. Tumor-associated PGF+ endothelial tip cells with elevated epithelial-mesenchymal transition features were enriched in immune-depleted TME and associated with poor prognosis. Fibrogenic and vascular pericytes (PC) derived from FABP4+ progenitors were two distinct tumor-associated PC subpopulations that strongly interacted with PGF+ tips, resulting in excess extracellular matrix (ECM) abundance and dysfunctional vasculature. Importantly, ECM-related cancer-associated fibroblasts enriched at the tumor boundary acted as a barrier to exclude immune cells, interacted with malignant cells to promote tumor progression, and regulated exhausted CD8+ T cells via immune checkpoint ligand-receptors (e.g., LGALS9/TIM-3) to promote immune escape. In addition, an interactive web-based tool (http://www.scpanstroma.yelab.site/) was developed for accessing, visualizing, and analyzing stromal data. Taken together, this study provides a systematic view of the highly heterogeneous stromal populations across cancer types and suggests future avenues for designing therapies to overcome the tumor-promoting functions of stromal cells. SIGNIFICANCE Comprehensive characterization of tumor-associated nonimmune stromal cells provides a robust resource for dissecting tumor microenvironment complexity and guiding stroma-targeted therapy development across multiple human cancer types.
Collapse
Affiliation(s)
- Yanhua Du
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jintong Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiaxin Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhenzhen Xun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hongxiang Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rujuan Bao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Youqiong Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Tonami K, Hayashi T, Uchijima Y, Kanai M, Yura F, Mada J, Sugahara K, Kurihara Y, Kominami Y, Ushijima T, Takubo N, Liu X, Tozawa H, Kanai Y, Tokihiro T, Kurihara H. Coordinated linear and rotational movements of endothelial cells compartmentalized by VE-cadherin drive angiogenic sprouting. iScience 2023; 26:107051. [PMID: 37426350 PMCID: PMC10329149 DOI: 10.1016/j.isci.2023.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Angiogenesis is a sequential process to extend new blood vessels from preexisting ones by sprouting and branching. During angiogenesis, endothelial cells (ECs) exhibit inhomogeneous multicellular behaviors referred to as "cell mixing," in which ECs repetitively exchange their relative positions, but the underlying mechanism remains elusive. Here we identified the coordinated linear and rotational movements potentiated by cell-cell contact as drivers of sprouting angiogenesis using in vitro and in silico approaches. VE-cadherin confers the coordinated linear motility that facilitated forward sprout elongation, although it is dispensable for rotational movement, which was synchronous without VE-cadherin. Mathematical modeling recapitulated the EC motility in the two-cell state and angiogenic morphogenesis with the effects of VE-cadherin-knockout. Finally, we found that VE-cadherin-dependent EC compartmentalization potentiated branch elongations, and confirmed this by mathematical simulation. Collectively, we propose a way to understand angiogenesis, based on unique EC behavioral properties that are partially dependent on VE-cadherin function.
Collapse
Affiliation(s)
- Kazuo Tonami
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tatsuya Hayashi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
- Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahiro Kanai
- Department of Education and Creation Engineering, Kurume Institute of Technology, 2228-66 Kamitsu-machi, Kurume, Fukuoka 830-0052, Japan
| | - Fumitaka Yura
- Department of Complex and Intelligent Systems, School of Systems Information Science, Future University Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan
| | - Jun Mada
- College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba 275-8576, Japan
| | - Kei Sugahara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuri Kominami
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan
| | - Toshiyuki Ushijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoko Takubo
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Xiaoxiao Liu
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideto Tozawa
- Department of Chemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshimitsu Kanai
- Cell Biology and Anatomy, Graduate School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Tetsuji Tokihiro
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
- Graduate School of Mathematical Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8914, Japan
- Department of Mathematical Engineering, Faculty of Engineering, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
3
|
Zhang XB, Hu YC, Cheng P, Zhou HY, Chen XY, Wu D, Zhang RH, Yu DC, Gao XD, Shi JT, Zhang K, Li SL, Song PJ, Wang KP. Targeted therapy for intervertebral disc degeneration: inhibiting apoptosis is a promising treatment strategy. Int J Med Sci 2021; 18:2799-2813. [PMID: 34220308 PMCID: PMC8241771 DOI: 10.7150/ijms.59171] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Honghui Hospital, Xi'an, Shanxi, 710000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng Cheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ding Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Shao-Long Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng-Jie Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
4
|
Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics 2019; 9:8073-8090. [PMID: 31754382 PMCID: PMC6857053 DOI: 10.7150/thno.37198] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
The use of nanomedicine for cancer treatment takes advantage of its preferential accumulation in tumors owing to the enhanced permeability and retention (EPR) effect. The development of cancer nanomedicine has promised highly effective treatment options unprecedented by standard therapeutics. However, the therapeutic efficacy of passively targeted nanomedicine is not always satisfactory because it is largely influenced by the heterogeneity of the intensity of the EPR effect exhibited within a tumor, at different stages of a tumor, and among individual tumors. In addition, limited data on EPR effectiveness in human hinders further clinical translation of nanomedicine. This unsatisfactory therapeutic outcome in mice and humans necessitates novel approaches to improve the EPR effect. This review focuses on current attempts at overcoming the limitations of traditional EPR-dependent nanomedicine by incorporating supplementary strategies, such as additional molecular targeting, physical alteration, or physiological remodeling of the tumor microenvironment. This review will provide valuable insight to researchers who seek to overcome the limitations of relying on the EPR effect alone in cancer nanomedicine and go "beyond the EPR effect".
Collapse
Affiliation(s)
- Jooho Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yongwhan Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyeyoun Chang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Lermant A, Murdoch CE. Cysteine Glutathionylation Acts as a Redox Switch in Endothelial Cells. Antioxidants (Basel) 2019; 8:E315. [PMID: 31426416 PMCID: PMC6720164 DOI: 10.3390/antiox8080315] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases (CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their local redox environment. This review summarizes the latest findings of S-glutathionylated proteins in major EC pathways, and the functional consequences on vascular pathophysiology. This review highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in maintaining vascular homeostasis and participating in various pathological processes.
Collapse
Affiliation(s)
- Agathe Lermant
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Colin E Murdoch
- Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK.
| |
Collapse
|
6
|
Tanaka HY, Kano MR. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment. Cancer Sci 2018; 109:2085-2092. [PMID: 29737600 PMCID: PMC6029832 DOI: 10.1111/cas.13630] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer is known for its dismal prognosis despite efforts to improve therapeutic outcome. Recently, cancer nanomedicine, application of nanotechnology to cancer diagnosis and treatment, has gained interest for treatment of pancreatic cancer. The enhanced permeability and retention (EPR) effect that promotes selective accumulation of nanometer‐sized molecules within tumors is the theoretical rationale of treatment. However, it is clear that EPR may be insufficient in pancreatic cancer as a result of stromal barriers within the tumor microenvironment (TME). These limit intratumoral accumulation of macromolecules. The TME and stromal barriers inside it consist of various stromal cell types which interact both with each other and with tumor cells. We are only beginning to understand the complexities of the stromal barriers within the TME and its functional consequences for nanomedicine. Understanding the complex crosstalk between barrier stromal cells is challenging because of the difficulty of modeling pancreatic cancer TME. Here we provide an overview of stromal barriers within the TME. We also describe the preclinical models, both in vivo and in vitro, developed to study them. We furthermore discuss the critical gaps in our understanding, and how we might formulate a better strategy for using nanomedicine against pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama, Japan
| |
Collapse
|
7
|
Kamei R, Tanaka HY, Kawano T, Morii C, Tanaka S, Nishihara H, Iwata C, Kano MR. Regulation of endothelial Fas expression as a mechanism of promotion of vascular integrity by mural cells in tumors. Cancer Sci 2017; 108:1080-1088. [PMID: 28247971 PMCID: PMC5448593 DOI: 10.1111/cas.13216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/18/2017] [Accepted: 02/23/2017] [Indexed: 11/29/2022] Open
Abstract
Angiogenesis is a multi‐step process that culminates in vascular maturation whereby nascent vessels stabilize to become functional, and mural cells play an essential role in this process. Recent studies have shown that mural cells in tumors also promote and maintain vascular integrity, with wide‐reaching clinical implications including the regulation of tumor growth, metastases, and drug delivery. Various regulatory signaling pathways have been hitherto implicated, but whether regulation of Fas‐dependent apoptotic mechanisms is involved has not yet been fully investigated. We first compared endothelial FAS staining in human pancreatic ductal adenocarcinomas and colon carcinomas and show that the latter, characterized by lower mural cell coverage of tumor vasculature, demonstrated higher expression of FAS than the former. Next, in an in vitro coculture system of MS‐1 and 10T1/2 cells as endothelial and mural cells respectively, we show that mural cells decreased endothelial Fas expression. Then, in an in vivo model in which C26 colon carcinoma cells were inoculated together with MS‐1 cells alone or with the further addition of 10T1/2 cells, we demonstrate that mural cells prevented hemorrhage. Finally, knockdown of endothelial Fas sufficiently recapitulated the protection against hemorrhage seen with the addition of mural cells. These results together suggest that regulation of endothelial Fas signaling is involved in the promotion of vascular integrity by mural cells in tumors.
Collapse
Affiliation(s)
- Ryosuke Kamei
- Medical Scientist Training Program, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Y Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takao Kawano
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chiharu Morii
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sayaka Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Nishihara
- Laboratory of Translational Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Caname Iwata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsunobu R Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|