1
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Li R, Zhou Q, Liu G, Zhu F, Liu Z, Bo H, Fan L. CSNK1G2-AS1 promotes metastasis, colony formation and serves as a biomarker in testicular germ cell tumor cells. J Cancer 2023; 14:2771-2783. [PMID: 37781070 PMCID: PMC10539554 DOI: 10.7150/jca.85640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/09/2023] [Indexed: 10/03/2023] Open
Abstract
Background/Aim: Some long non-coding RNAs (lncRNAs) have been found to significantly participate in the progression of TGCTs. In comparison to the normal testis, the TGCT tissues showed significantly decreased CSNK1G2-AS1 expression, however, its effect on TGCTs and its mechanism are still unclear. The aim of this study is to investigate the effect of CSNK1G2-AS1 on TGCTs and explore the mechanism underlying its effect on TGCTs. Materials and Methods: In this study, to evaluate the expression of CSNK1G2-AS1 in tissue samples from TGCTs, the UCSC and GEPIA databases were applied and qRT-PCR was conducted. The Kaplan-Meier Plotter was applied to analyze the correlation between CSNK1G2-AS1 methylation levels and the prognosis of TGCTs patients. The assays of MTS, clone formation, transwell, and flow cytometry were performed to investigate the effect of CSNK1G2-AS1 overexpression on the proliferation, metastasis, and apoptosis of TGCT cells, respectively. Finally, western blotting was conducted to determine the expressions of the proteins associated with EMT and AKT. Results: Our study first found that, compared to the normal testis, TGCTs tissue showed significantly decreased CSNK1G2-AS1 expression, and hypomethylation of CSNK1G2-AS1 was significantly correlated with a better prognosis with TGCTs patients. In vitro, we found that overexpression of CSNK1G2-AS1 dramatically promoted the clone formation, invasion, and migration of TGCT cells, but inhibited apoptosis. And CSNK1G2-AS1 overexpression significantly decreased the expression of EMT-associated proteins ZO-1 but increased the expression and phosphorylation of AKT. Conclusions: CSNK1G2-AS1 may play an essential role in the pathogenesis and metastasis of TGCTs through the EMT- and AKT-mediated signal pathways.
Collapse
Affiliation(s)
- Ruixue Li
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Qianyin Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Guangmin Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
| | - Zhizhong Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, People's Republic of China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, People's Republic of China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, People's Republic of China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Nucleic Acids Res 2023; 51:1443-1457. [PMID: 36651297 PMCID: PMC9943680 DOI: 10.1093/nar/gkac1259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.
Collapse
Affiliation(s)
- Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Li
- National Protein Science Facility, Tsinghua University, Beijing 100084, China
| | - Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xi Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guohui Shang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyun Chen
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Xin Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lun Jiang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zhongzhou Chen
- To whom correspondence should be addressed. Tel: +86 10 62734078; Fax: +86 10 62734078;
| |
Collapse
|
4
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Testicular Germ Cell Tumours and Proprotein Convertases. Cancers (Basel) 2022; 14:cancers14071633. [PMID: 35406405 PMCID: PMC8996948 DOI: 10.3390/cancers14071633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Despite the high survival rate of the most common neoplasia in young Caucasian men: Testicular Germ Cell Tumors (TGCT), the quality of life of these patients is impaired by the multiple long-term side effects of their treatment. The study of molecules that can serve both as diagnostic biomarkers for tumor development and as therapeutic targets seems necessary. Proprotein convertases (PC) are a group of proteases responsible for the maturation of inactive proproteins with very diverse functions, whose alterations in expression have been associated with various diseases, such as other types of cancer and inflammation. The study of the immune tumor microenvironment and the substrates of PCs could contribute to the development of new and necessary immunotherapies to treat this pathology. Abstract Testicular Germ Cell Tumours (TGCT) are widely considered a “curable cancer” due to their exceptionally high survival rate, even if it is reduced by many years after the diagnosis due to metastases and relapses. The most common therapeutic approach to TGCTs has not changed in the last 50 years despite its multiple long-term side effects, and because it is the most common malignancy in young Caucasian men, much research is needed to better the quality of life of the many survivors. Proprotein Convertases (PC) are nine serine proteases responsible for the maturation of inactive proproteins with many diverse functions. Alterations in their expression have been associated with various diseases, including cancer and inflammation. Many of their substrates are adhesion molecules, metalloproteases and proinflammatory molecules, all of which are involved in tumour development. Inhibition of certain convertases has also been shown to slow tumour formation, demonstrating their involvement in this process. Considering the very established link between PCs and inflammation-related malignancies and the recent studies carried out into the immune microenvironment of TGCTs, the study of the involvement of PCs in testicular cancer may open up avenues for being both a biomarker for diagnosis and a therapeutic target.
Collapse
|
6
|
Luo Y, Zhou Q, Zhu F, Fan L, Bo H, Wang X. Hypomethylation-driven AKT Serine/Threonine Kinase 3 promotes testicular germ cell tumors proliferation and negatively correlates to immune infiltration. Bioengineered 2021; 12:11288-11302. [PMID: 34882061 PMCID: PMC8810072 DOI: 10.1080/21655979.2021.2002621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AKT Serine/Threonine Kinase 3 (AKT3) has been reported to play an important role in different tumors. However, its clinical value, biological function, and molecular mechanism in testicular germ cell tumors (TGCT) remains unclear. In the current study, we applied the Gene Set Cancer Analysis (GSCA), UCSC XENA, Gene Expression Omnibus (GEO), the Human Protein Atlas (HPA), LinkedOmics, DiseaseMeth version 2.0, TISIDB, and other databases for TGCT data mining. Then, we investigated AKT3’s mechanism of action and clinical survival significance via bioinformatics followed by in vitro experiments. We found that AKT3 was upregulated and had frequent copy number amplifications in TGCT, which were associated with poor survival outcomes of patients. On the other hand, mutations that led to AKT3 loss-of-function were correlated to a better prognosis in patients. Moreover, AKT3 silencing significantly inhibited the proliferation, DNA synthesis and colony formation of NCCIT cells (a TGCT cell line). AKT3 might participate in TGCT progression through multiple signaling pathways, such as ErbB, oxidative phosphorylation, and affecting tumor immune infiltration. Also, the upregulation of AKT3 mRNA expression might be driven by the hypomethylation of its promoter region. Overall, AKT3 is a potential TGCT oncogene and can be further used as a therapeutic target.
Collapse
Affiliation(s)
- Yang Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qianyin Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Xingming Wang
- Department of Nuclear Medicine (Pet Center), Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Bo H, Zhu F, Liu Z, Deng Q, Liu G, Li R, Zhu W, Tan Y, Liu G, Fan J, Fan L. Integrated analysis of high-throughput sequencing data reveals the key role of LINC00467 in the invasion and metastasis of testicular germ cell tumors. Cell Death Discov 2021; 7:206. [PMID: 34362879 PMCID: PMC8346510 DOI: 10.1038/s41420-021-00588-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in various physiological and pathological processes. However, the role of lncRNAs in testicular germ cell tumor (TGCT) has been rarely reported. Our purpose is to comprehensively survey the expression and function of lncRNAs in TGCT. In this study, we used RNA sequencing to construct the lncRNA expression profiles of 13 TGCT tissues and 4 paraneoplastic tissues to explore the function of lncRNAs in TGCT. The bioinformatics analysis showed that many lncRNAs are differentially expressed in TGCT. GO and KEGG enrichment analyses revealed that the differentially expressed lncRNAs participated in various biological processes associated with tumorigenesis in cis and trans manners. Further, we found that the expression of LINC00467 was positively correlated with the poor prognosis and pathological grade of TGCT using WGCNA analysis and GEPIA database data mining. In vitro experiments revealed that LNC00467 could promote the migration and invasion of TGCT cells by regulating the expression of AKT3 and influencing total AKT phosphorylation. Further analysis of TCGA data revealed that the expression was negatively correlated with the infiltration of immune cells and the response to PD1 immunotherapy. In summary, this study is the first to construct the expression profile of lncRNAs in TGCT. It is also the first study to identify the metastasis-promoting role of LNC00467, which can be used as a potential predictor of TGCT prognosis and immunotherapeutic response to provide a clinical reference for the treatment and diagnosis of TGCT metastasis.
Collapse
Affiliation(s)
- Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Cancer Hospital, Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
| | - Qi Deng
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guangmin Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ruixue Li
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wenbing Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Yueqiu Tan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Gang Liu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Jingyu Fan
- Department of Chemistry and Biochemistry, University of South Carolina, Orangeburg, SC, USA
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China.
| |
Collapse
|
8
|
Wang S, Yi M, Zhang X, Zhang T, Jiang L, Cao L, Zhou Y, Fang X. Effects of CDKN2B-AS1 on cellular proliferation, invasion and AKT3 expression are attenuated by miR-424-5p in a model of ovarian endometriosis. Reprod Biomed Online 2021; 42:1057-1066. [PMID: 33820740 DOI: 10.1016/j.rbmo.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023]
Abstract
RESEARCH QUESTION Endometriosis is a common and complicated gynaecologic disease. Long non-coding RNA CDKN2B-AS1 plays a crucial role in the development and progression of several cancers. Whether CDKN2B-AS1 contributes to endometriosis, however, remains unknown. DESIGN Cellular proliferation, invasion and DNA synthesis abilities were assessed by CCK8, transwell and 5-ethynyle-2'-deoxyuridine assays. The expression of epithelial-mesenchymal transition markers and three isoforms of AKT was detected using Western blot. Real-time polymerase chain reaction was used to determine the relative expression levels of CDKN2B-AS1 and candidate miRNAs in ectopic, eutopic endometria and normal endometrial tissues. The relationship between CDKN2B-AS1 and miRNA was determined by luciferase reporter assays. RESULTS The relative expression level of CDKN2B-AS1 was up-regulated in eutopic and ectopic endometria. In endometrial stromal cells and Ishikawa cells, CDKN2B-AS1 overexpression promoted cellular proliferation and invasion, and increased the protein expression of vimentin but decreased the expression of E-cadherin. miR-424-5p was confirmed the target of CDKN2B-AS1 through bioinformatics tools and luciferase reporter assays. In addition, the enhanced effect of cellular phenotype of CDKN2B-AS1 overexpression was significantly attenuated by miR-424-5p overexpression. Furthermore, miR-424-5p was able to directly target AKT3 through luciferase reporter assay. Mechanistically, CDKN2B-AS1 acts as a ceRNA by sponging miR-424-5p and targets AKT3. CONCLUSIONS The cellular mechanism of CDKN2B-AS1 in endometriosis was confirmed; CDKN2B-AS1 may be a potential target for ovarian endometriosis therapy.
Collapse
Affiliation(s)
- Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Li Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Le Cao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Yuxin Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China.
| |
Collapse
|
9
|
Xia L, Shen D, Zhang Y, Lu J, Wang M, Wang H, Chen Y, Xue D, Xie D, Li G. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. J Cell Mol Med 2021; 25:2404-2417. [PMID: 33491272 PMCID: PMC7933964 DOI: 10.1111/jcmm.16074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2020] [Accepted: 10/25/2020] [Indexed: 01/12/2023] Open
Abstract
Drug options for the life‐threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4‐LBD) and induces a conformational change in the secondary structure of TR4‐LBD. Bexarotene suppressed AtT‐20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4‐increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5’ promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH‐secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.
Collapse
Affiliation(s)
- Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youyun Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingchao Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajiang Xie
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Xia L, Shen D, Wang H, Ren L, Chen Y, Li G. Identification of Small-Molecule Regulators of Testicular Receptor 4 via a Drug Repurposing Screening. ACS OMEGA 2020; 5:30625-30632. [PMID: 33283111 PMCID: PMC7711931 DOI: 10.1021/acsomega.0c04623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The testicular receptor 4 (TR4) is a nuclear receptor implicated in multiple pathological processes, including cancer development, chemotherapy, and radiotherapy resistance. However, no effective TR4 small-molecule regulator is available to date. Here, we assessed a physical-interaction-based surface plasmon resonance imaging assay for discovery of TR4 regulators. We screened 1018 FDA-approved drugs and obtained 126 drugs with K D values below 10-6 M. The dual-luciferase-based biological assay verified four activatory compounds and two inhibitory compounds against TR4. Among them, nilotinib exhibited the most potent inhibitor, with an EC50 of 1.05 μM, while genistein represented the most potent activator, with an EC50 of 2.42 μM. Both drugs were predicted to bind in the ligand binding pocket of TR4. The circular dichroism spectroscopic assay revealed differed conformation changes upon nilotinib or genistein binding. These results established our combined physical and biological approaches as a highly effective way to identify and develop new TR4 regulators.
Collapse
|
11
|
Guerra F, Quintana S, Giustina S, Mendeluk G, Jufe L, Avagnina MA, Díaz LB, Palaoro LA. Investigation of EGFR/pi3k/Akt signaling pathway in seminomas. Biotech Histochem 2020; 96:125-137. [PMID: 32597316 DOI: 10.1080/10520295.2020.1776393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the receptor for epidermal growth factor (EGFR) in some testicular tumors activates several signaling pathways. Some components of these pathways are phosphorylated or mutated in testicular germ tumors (TCGT), including EGFR, Kirstein ras oncogen (KRAS) and cell surface protein of the germ cell (KIT). The latter two activate RAF ⁄MEK⁄ERK and PI3 K⁄AKT, and interconnect with the EGFR/pI3 k/Akt pathway. We investigated the expression of EGFR/pI3 k/Akt pathway proteins in seminomas and in their precursor lesion, germinal cell neoplasia in situ (GCNIS) and related genetic mutations. We used immunohistochemistry for pEGFR, pI3 k and pAkt expression with a scoring system for 46 seminoma surgical specimens: 36 classical and 10 GCNIS. In 17 samples, the mutations of EGFR (exons 19 - 21), KIT (exons 11, 17) and KRAS (exons 2, 3) were investigated using qPCR and sequencing. Of the 36 seminomas studied, 22 (61%) expressed pEGFR. Ten samples exhibited high scores for pEGFR, pI3 k and pAkt. In 5 of 17 cases (33%) some mutation was exhibited in the exons studied: 21 of EGFR (2), 17 of EGFR (1), 3 of KRAS (1) and 11 of KIT (1). Six cases exhibited nuclear translocation of EGFR; of these, four exhibited mutations of EGFR, KRAS and KIT. Eight of ten of the GCNIS expressed a high pEGFR score (80%). In 2 of 6 cases (33%), mutation was detected in exon 21 of EGFR and one smear showed EGFR translocation to the nucleus. The translocation represents a subpopulation with worse prognosis for TCGT. The EGFR/pI3 k/Akt signaling pathway is linked to TDRG1, which regulates chemosensitivity to cisplatin; this is a mechanism of resistance to treatment. TDRG1 and the EGFR/pI3 k/pAkt pathway could be therapeutic targets for seminomas resistant to cisplatin.
Collapse
Affiliation(s)
- F Guerra
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - S Quintana
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - S Giustina
- Fares Taie Institute , Mar Del Plata, Buenos Aires, Argentina
| | - G Mendeluk
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| | - L Jufe
- Laboratory of Pathology, Ramos Mejía Hospital, C.A.B.A ., Argentina
| | - M A Avagnina
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L B Díaz
- Department of Pathology, Clinical Hospital (UBA), C.A.B.A ., Córdoba, Argentina
| | - L A Palaoro
- Department of Clinical Biochemistry, Clinical Hospital (UBA), C.A.B.A., INFIBIOC , Córdoba, Argentina
| |
Collapse
|
12
|
Zhu F, Bo H, Liu G, Li R, Liu Z, Fan L. SPANXN2 functions a cell migration inhibitor in testicular germ cell tumor cells. PeerJ 2020; 8:e9358. [PMID: 32612888 PMCID: PMC7319028 DOI: 10.7717/peerj.9358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background SPANX family members are thought to play an important role in cancer progression. The SPANXN2 is a gene expressed mainly in normal testis, but its role in testicular germ cell tumors (TGCTs) has yet to be investigated. TGCT is one of the most common solid tumors in young men and is associated with poor prognosis; however, effective prognostic indicators remain elusive. Therefore, we investigated the role of SPANXN2 in TGCT development. Methods SPANXN2 expression levels were validated by quantitative real-time polymerase chain reaction (qRT-PCR) analyses of 14 TGCT samples and five adjacent normal tissue samples. SPANXN2 was transiently overexpressed in TGCT cells to study the consequences for cell function. The effects of SPANXN2 on cell migration were evaluated in transwell and wound healing assays. The effects on cloning ability were evaluated in colony formation assays. MTT assays and cell cycle analysis were used to detect the effects of SPANXN2 on cell proliferation. The expression levels of EMT- and AKT-related proteins in cells overexpressing SPANXN2 were analyzed by Western blotting. Results Compared with adjacent normal tissues, the Gene Expression Profiling Interactive Analysis database showed SPANXN2 expression was downregulated in TGCTs which was consistent with the qRT-PCR analysis. SPANXN2 overexpression reduced cell migration and colony formation capability and downregulated expression of EMT- and AKT-related proteins, Vimentin, Snail, AKT, and p-AKT. Conclusion Our results suggest that SPANXN2 regulates TGCT cell migration via EMT- and AKT-related proteins although its role in the occurrence and development of TGCT remains to be fully elucidated.
Collapse
Affiliation(s)
- Fang Zhu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Hao Bo
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Guangmin Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Ruixue Li
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Hunan Cancer Hospital, Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine of Central South University, Changsha, Hunan, China
| | - Liqing Fan
- Institute of Reproductive & Stem Cell Engineering, School of Basic MedicalScience, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| |
Collapse
|
13
|
Duan M, Fang M, Wang C, Wang H, Li M. LncRNA EMX2OS Induces Proliferation, Invasion and Sphere Formation of Ovarian Cancer Cells via Regulating the miR-654-3p/AKT3/PD-L1 Axis. Cancer Manag Res 2020; 12:2141-2154. [PMID: 32273754 PMCID: PMC7102881 DOI: 10.2147/cmar.s229013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Long noncoding RNA (lncRNA) deregulation is frequent in human ovarian cancers (OCs), but the role of specific miRNAs involved in this disease remains elusive. LncRNA EMX2OS was previously reported to act as an oncogene in human cancers. However, their accurate expression, function and underlying mechanisms in OC are largely unclear. MATERIALS AND METHODS The levels of EMX2OS in OC tissues and cell lines were determined by quantitative real-time PCR, and the function of EMX2OS was then analyzed both in vitro and in vivo. Luciferase assays and immunoprecipitation assays were performed to analyze the association between EMX2OS and miR-654 expression in OC cells. RESULTS EMX2OS is overexpressed in human ovarian cancer tissues. Knockdown of EMX2OS reduced, while overexpression of EMX2OS enhanced the proliferation, invasion and sphere formation of OC cells. In addition, EMX2OS enhanced tumor growth in an in vivo xenograft model of human OC. We discovered that EMX2OS directly binds to miR-654 and suppresses its expression, thus leading to the upregulation of AKT3, which served as a direct target of miR-654. Moreover, miR-654 inhibited cell proliferation, invasion and sphere formation, and restoration of AKT3 reversed the effects of EMX2OS silencing or miR-654 overexpression. Furthermore, PD-L1 was identified as the key oncogenic component acting downstream of AKT3 in OC cells. Ectopic expression of PD-L1 reversed the anti-cancer functions by EMX2OS knockdown, AKT3 silencing or miR-654 upregulation in OC cells. CONCLUSION These results demonstrated that the EMX2OS/miR-654/AKT3/PD-L1 axis confers aggressiveness in ovarian cancer and may represent a therapeutic target for OC metastasis.
Collapse
Affiliation(s)
- Meng Duan
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Meixia Fang
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Changhe Wang
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Hongyan Wang
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| | - Meng Li
- Department of Gynecology, Jining No. 1 People’s Hospital, Jining, Shandong272000, People’s Republic of China
| |
Collapse
|
14
|
Wang H, Li ZY, Xu ZH, Chen YL, Lu ZY, Shen DY, Lu JY, Zheng QM, Wang LY, Xu LW, Xue DW, Wu HY, Xia LQ, Li GH. The prognostic value of miRNA-18a-5p in clear cell renal cell carcinoma and its function via the miRNA-18a-5p/HIF1A/PVT1 pathway. J Cancer 2020; 11:2737-2748. [PMID: 32226492 PMCID: PMC7086242 DOI: 10.7150/jca.36822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Clear cell renal cell carcinoma(ccRCC) is the most common type of renal cell carcinoma. While it is curable when detected at an early stage, some patients presented with advanced disease have poor prognosis. We aimed to identify key genes and miRNAs associated with clinical prognosis in ccRCC. Methods The microarray datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were analyzed by using GEO2R. Then, Functional enrichment analysis was performed using the DAVID. A retrospective series of 254 ccRCC patients with complete clinical information was included in this study. Kaplan-Meier analysis and multivariate cox regression analysis were used for prognostic analysis. Wound healing assay and transwell assay were designed to evaluate the migration and invasion ability of ccRCC cell lines. Results miRNA-18a was identified to be related with prognosis of ccRCC by using Kaplan-Meier analysis and multivariate cox regression analysis demonstrated that the prognostic value of miRNA-18a was independent of clinical features. Further studies showed that up-regulation of miRNA-18a had a positive effect on migration and invasion of ccRCC cells. The target gene (HIF1A) of the miRNA-18a was predicted by using the miRPathDB database. The transcription factors of DEGs were identified by using the i-cisTarget. Luckily, HIF1A was found to be one of the transcription factors of DEGs. Among these DEGs, PVT1 may be regulated by HIF1A and be related with prognosis of ccRCC. Finally, validation of miRNA18a/HIF1A/PVT1 pathway was checked via reverse transcription-polymerase chain reaction (RT-PCR) assay in both cell lines and clinical tumor samples. Conclusion Our research revealed that miRNA18a/HIF1A/PVT1 pathway might play a crucial role in ccRCC progression, providing novel insights into understanding of ccRCC molecular mechanisms. Importantly, miRNA-18a could serve as a potential diagnostic biomarker and therapeutic targets for ccRCC patients.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Zhong-Yi Li
- Department of Urology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Zu-Hao Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Yuan-Lei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Ze-Yi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Dan-Yang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Jie-Yang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Qi-Ming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Li-Ya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Li-Wei Xu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Ding-Wei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Hai-Yang Wu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Li-Qun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| | - Gong-Hui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China, 310016
| |
Collapse
|
15
|
Chen Y, Lu J, Xia L, Xue D, Yu X, Shen D, Xu L, Li G. Testicular orphan receptor 4 promotes tumor progression and implies poor survival through AKT3 regulation in seminoma. Cancer Sci 2018; 109:384-394. [PMID: 29197138 PMCID: PMC5797821 DOI: 10.1111/cas.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Seminoma is the most common testicular germ cell tumor worldwide and mainly occurs in 15-35-year-old young men. Early studies have indicated that testicular nuclear receptor 4 (TR4) first cloned from testis is involved in the invasion and metastasis of several human tumors; however, little attention is paid to the function of TR4 in seminoma. Our immunohistochemical (IHC) staining results showed that patients with advanced stage tumors tended to have higher expression of TR4. Importantly, there was a significant association between elevated TR4 expression and reduced overall survival in seminoma patients. In vitro MTS, western blot and transwell assays, after manipulating TR4 expression in Tcam-2 cells, revealed that TR4 induced epithelial-to-mesenchymal transition (EMT) and promoted Tcam-2 cell proliferation and invasion. Mechanism dissection demonstrated that AKT3, a critical component in the signaling pathway, played a crucial role in mediating TR4-promoted Tcam-2 cell proliferation and invasion. We further revealed that TR4 modulated AKT3 at the transcriptional level via chromatin immunoprecipitation and luciferase assays. Meanwhile, addition of the AKT3 siRNA blocked the function of TR4. Overall, these findings first elucidate that TR4 is a novel prognostic marker and plays a critical role in the metastatic capacity of Tcam-2 cells by EMT regulation and, consequently, targeting TR4-AKT3 pathway may serve as a potential therapeutic approach for seminoma.
Collapse
Affiliation(s)
- Yuanlei Chen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Yu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liwei Xu
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gonghui Li
- Department of Urology and Chawnshang Chang Liver Cancer Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|