1
|
DNA damage triggers the nuclear accumulation of RASSF6 tumor suppressor protein via CDK9 and BAF53 to regulate p53-target gene transcription. Mol Cell Biol 2021; 42:e0031021. [PMID: 34898277 DOI: 10.1128/mcb.00310-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RASSF6, a member of the tumor suppressor Ras-association domain family (RASSF) proteins, regulates cell cycle arrest and apoptosis via p53 and plays a tumor suppressor role. We previously reported that RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. In this study, we demonstrated that RASSF6 has nuclear-localization and nuclear-export signals and that DNA damage triggers the nuclear accumulation of RASSF6. We found that RASSF6 directly binds to BAF53, the component of SWI/SNF complex. DNA damage induces CDK9-mediated phosphorylation of BAF53, which enhances the interaction with RASSF6 and increases the amount of RASSF6 in the nucleus. Subsequently, RASSF6 augments the interaction between BAF53 and BAF60a, another component of SWI/SNF complex, and further promotes the interaction of BAF53 and BAF60a with p53. BAF53 silencing or BAF60a silencing attenuates RASSF6-mediated p53-target gene transcription and apoptosis. Thus, RASSF6 is involved in the regulation of DNA damage-induced complex formation including CDK9, BAF53, BAF60a, and p53.
Collapse
|
2
|
Shimizu T, Nakamura T, Inaba H, Iwasa H, Maruyama J, Arimoto-Matsuzaki K, Nakata T, Nishina H, Hata Y. The RAS-interacting chaperone UNC119 drives the RASSF6-MDM2-p53 axis and antagonizes RAS-mediated malignant transformation. J Biol Chem 2020; 295:11214-11230. [PMID: 32554467 DOI: 10.1074/jbc.ra120.012649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/16/2020] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the proto-oncogene GTPase RAS is frequently mutated in human cancers. Mutated RAS proteins trigger antiapoptotic and cell-proliferative signals and lead to oncogenesis. However, RAS also induces apoptosis and senescence, which may contribute to the eradication of cells with RAS mutations. We previously reported that Ras association domain family member 6 (RASSF6) binds MDM2 and stabilizes the tumor suppressor p53 and that the active form of KRAS promotes the interaction between RASSF6 and MDM2. We also reported that Unc-119 lipid-binding chaperone (UNC119A), a chaperone of myristoylated proteins, interacts with RASSF6 and regulates RASSF6-mediated apoptosis. In this study, using several human cancer cell lines, quantitative RT-PCR, RNAi-based gene silencing, and immunoprecipitation/-fluorescence and cell biology assays, we report that UNC119A interacts with the active form of KRAS and that the C-terminal modification of KRAS is required for this interaction. We also noted that the hydrophobic pocket of UNC119A, which binds the myristoylated peptides, is not involved in the interaction. We observed that UNC119A promotes the binding of KRAS to RASSF6, enhances the interaction between RASSF6 and MDM2, and induces apoptosis. Conversely, UNC119A silencing promoted soft-agar colony formation, migration, and invasiveness in KRAS-mutated cancer cells. We conclude that UNC119A promotes KRAS-mediated p53-dependent apoptosis via RASSF6 and may play a tumor-suppressive role in cells with KRAS mutations.
Collapse
Affiliation(s)
- Takanobu Shimizu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Nakamura
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Inaba
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan .,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Lin Y, Zhai H, Ouyang Y, Lu Z, Chu C, He Q, Cao X. Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells. Cancer Cell Int 2019; 19:129. [PMID: 31114449 PMCID: PMC6518815 DOI: 10.1186/s12935-019-0845-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Pyruvate kinase isozyme type M2 (PKM2) catalyzes the final step in glycolysis and has been found to be up-regulated in multiple human malignancies. However, whether PKM2 regulates the radiosensitivity of human cervical cancer (CC) remains unknown. Methods The expression of PKM2 in 94 patients with CC in the complete response (CR) and noncomplete response (nCR) groups, was evaluated by immunohistochemistry. The effect of PKM2 inhibition on radiosensitivity, the cell cycle, DNA damage, and apoptosis was evaluated by immunofluorescence analysis, colony formation assay, flow cytometry analysis and Western blotting. Results PKM2 expression was more highly expressed in the nCR group than that in CR group and PKM2 expression was enhanced in CC cells after ionizing radiation (IR). In addition, knockdown of PKM2 combined with IR significantly reduced cell growth, promoted apoptosis, and enhanced radiosensitivity. Additionally, knockdown of PKM2 with IR resulted in increased phosphorylation of DNA repair checkpoint proteins (ATM) and phosphorylated-H2AX. Moreover, knockdown of PKM2 combined with IR significantly increased the expression of cleaved caspase 3 and caspase 9, whereas Bcl2 expression was suppressed. Furthermore, knockdown of PKM2 combined with IR markedly reduced the expression of several cancer stem cell biomarkers in vitro, including NANOG, OCT4, SOX2, and Bmi1. Conclusions The results of our study suggests that PKM2 might be involved in mediating CC radiosensitivity and is identified as a potentially important target to enhance radiosensitivity in patients with CC.
Collapse
Affiliation(s)
- Yanzhu Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hui Zhai
- Gynecology Department, Jinan Maternity and Child Care Hospital, Jinan, China
| | - Yi Ouyang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhiyuan Lu
- 3Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chengbiao Chu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianting He
- 3Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinping Cao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
4
|
Iwasa H, Sarkar A, Shimizu T, Sawada T, Hossain S, Xu X, Maruyama J, Arimoto-Matsuzaki K, Withanage K, Nakagawa K, Kurihara H, Kuroyanagi H, Hata Y. UNC119 is a binding partner of tumor suppressor Ras-association domain family 6 and induces apoptosis and cell cycle arrest by MDM2 and p53. Cancer Sci 2018; 109:2767-2780. [PMID: 29931788 PMCID: PMC6125449 DOI: 10.1111/cas.13706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 01/06/2023] Open
Abstract
Ras-association domain family 6 (RASSF6) is a tumor suppressor that interacts with MDM2 and stabilizes p53. Caenorhabditis elegans unc-119 encodes a protein that is required for normal development of the nervous system. Humans have 2 unc-119 homologues, UNC119 and UNC119B. We have identified UNC119 as a RASSF6-interacting protein. UNC119 promotes the interaction between RASSF6 and MDM2 and stabilizes p53. Thus, UNC119 induces apoptosis by RASSF6 and p53. UNC119 depletion impairs DNA repair after DNA damage and results in polyploid cell generation. These findings support that UNC119 is a regulator of the RASSF6-MDM2-p53 axis and functions as a tumor suppressor.
Collapse
Affiliation(s)
- Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aradhan Sarkar
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanobu Shimizu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Sawada
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Xiaoyin Xu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,China Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanchanamala Withanage
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidetake Kurihara
- Department of Physical Therapy, Faculty of Health Science, Aino University, Osaka, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|