1
|
Niu Q, Ye S, Zhao L, Qian Y, Liu F. The role of liver cancer stem cells in hepatocellular carcinoma metastasis. Cancer Biol Ther 2024; 25:2321768. [PMID: 38393655 PMCID: PMC10896152 DOI: 10.1080/15384047.2024.2321768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Metastasis accounts for the vast majority of cancer deaths; however, this complex process has yet to be fully explained. To form metastases, cancer cells must undergo a series of steps, known as the "Metastatic cascade", each of which requires a specific functional transformation. Cancer stem cells (CSCs) play a vital role in tumor metastasis, but their dynamic behavior and regulatory mechanisms have not been fully elucidated. Based on the "Metastatic cascade" theory, this review summarizes the effect of liver CSCs on the metastatic biological programs that underlie the dissemination and metastatic growth of cancer cells. Liver CSCs have the capacity to initiate distant organ metastasis via EMT, and the microenvironment transformation that supports the ability of these cells to disseminate, evade immune surveillance, dormancy, and regenerate metastasis. Understanding the heterogeneity and traits of liver CSCs in these processes is critical for developing strategies to prevent and treat metastasis of advanced hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- School Hospital, Qingdao University of Science and Technology, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Zhu Y, He Y, Gan R. Wnt Signaling in Hepatocellular Carcinoma: Biological Mechanisms and Therapeutic Opportunities. Cells 2024; 13:1990. [PMID: 39682738 PMCID: PMC11640042 DOI: 10.3390/cells13231990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), characterized by significant morbidity and mortality rates, poses a substantial threat to human health. The expression of ligands and receptors within the classical and non-classical Wnt signaling pathways plays an important role in HCC. The Wnt signaling pathway is essential for regulating multiple biological processes in HCC, including proliferation, invasion, migration, tumor microenvironment modulation, epithelial-mesenchymal transition (EMT), stem cell characteristics, and autophagy. Molecular agents that specifically target the Wnt signaling pathway have demonstrated significant potential for the treatment of HCC. However, the precise mechanism by which the Wnt signaling pathway interacts with HCC remains unclear. In this paper, we review the alteration of the Wnt signaling pathway in HCC, the mechanism of Wnt pathway action in HCC, and molecular agents targeting the Wnt pathway. This paper provides a theoretical foundation for identifying molecular agents targeting the Wnt pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Runliang Gan
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.Z.); (Y.H.)
| |
Collapse
|
3
|
Ran Y, Han S, Gao D, Chen X, Liu C. Interference of FZD2 suppresses proliferation, vasculogenic mimicry and stemness in glioma cells via blocking the Notch/NF‑κB signaling pathway. Exp Ther Med 2024; 28:373. [PMID: 39091630 PMCID: PMC11292164 DOI: 10.3892/etm.2024.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/22/2024] [Indexed: 08/04/2024] Open
Abstract
Frizzled family protein 2 (FZD2) is widely associated with tumor development and metastasis. The present study aimed to gain an insight into the role and regulatory mechanism of FZD2 in glioma. The expression level of FZD2 in normal astrocyte and glioma cells was determined by reverse transcription-quantitative PCR and western blotting, and cell transfection was conducted for FZD2 expression knockdown. Malignant behaviors including cell proliferation, migration and invasion, vasculogenic mimicry (VM) and cell stemness were determined using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU) staining, colony formation, wound healing, Transwell, 3D culturing and sphere formation assays. The expression levels of proteins related to stemness, epithelial-mesenchymal transition (EMT) and Notch/NF-κB signaling were measured by western blotting. Then, the Notch agonist, Jagged-1 (JAG), was adopted for rescue experiments. The results demonstrated that FZD2 was highly expressed in glioma cells. Interference of FZD2 expression suppressed the proliferation of glioma cells, as evidenced by the reduced cell viability and the number of EdU+ cells and colonies. Meanwhile, the reduced sphere formation ability and decreased protein expression of Nanog, Sox2 and Oct4 following FZD2 knockdown confirmed that FZD2 repressed cell stemness in glioma. Additionally, FZD2 knockdown suppressed the migration, invasion, EMT and VM formation capabilities of glioma cells, and also blocked the Notch/NF-κB signaling pathway. Furthermore, activation of Notch by JAG treatment partially reversed the aforementioned FZD2 knockdown-mediated changes in glioma cell malignant behaviors. In conclusion, FZD2 may contribute to glioma progression through activating the Notch/NF-κB signaling pathway, providing a plausible therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Yuge Ran
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shuai Han
- Department of Medicine, Batai Biopharmaceutical Co., Ltd., Beijing 102600, P.R. China
| | - Dongxue Gao
- Proton Therapy Center, Cancer Hospital Chinese Academy of Medical Sciences, Langfang, Hebei 065000, P.R. China
| | - Xiaobo Chen
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chan Liu
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
4
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
5
|
Zhao L, Li Q, Zhou T, Liu X, Guo J, Fang Q, Cao X, Geng Q, Yu Y, Zhang S, Deng T, Wang X, Jiao Y, Zhang M, Liu H, Tan H, Xiao C. Role of N6-methyladenosine in tumor neovascularization. Cell Death Dis 2024; 15:563. [PMID: 39098905 PMCID: PMC11298539 DOI: 10.1038/s41419-024-06931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Tumor neovascularization is essential for the growth, invasion, and metastasis of tumors. Recent studies have highlighted the significant role of N6-methyladenosine (m6A) modification in regulating these processes. This review explores the mechanisms by which m6A influences tumor neovascularization, focusing on its impact on angiogenesis and vasculogenic mimicry (VM). We discuss the roles of m6A writers, erasers, and readers in modulating the stability and translation of angiogenic factors like vascular endothelial growth factor (VEGF), and their involvement in key signaling pathways such as PI3K/AKT, MAPK, and Hippo. Additionally, we outline the role of m6A in vascular-immune crosstalk. Finally, we discuss the current development of m6A inhibitors and their potential applications, along with the contribution of m6A to anti-angiogenic therapy resistance. Highlighting the therapeutic potential of targeting m6A regulators, this review provides novel insights into anti-angiogenic strategies and underscores the need for further research to fully exploit m6A modulation in cancer treatment. By understanding the intricate role of m6A in tumor neovascularization, we can develop more effective therapeutic approaches to inhibit tumor growth and overcome treatment resistance. Targeting m6A offers a novel approach to interfere with the tumor's ability to manipulate its microenvironment, enhancing the efficacy of existing treatments and providing new avenues for combating cancer progression.
Collapse
Affiliation(s)
- Lu Zhao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Qinshan Li
- Institute of Precision Medicine of Guizhou Province, Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Tongliang Zhou
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xuan Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Yang Yu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Songjie Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| | - Haidong Tan
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
García-Hernández AP, Sánchez-Sánchez G, Carlos-Reyes A, López-Camarillo C. Functional roles of microRNAs in vasculogenic mimicry and resistance to therapy in human cancers: an update. Expert Rev Clin Immunol 2024; 20:913-926. [PMID: 38712535 DOI: 10.1080/1744666x.2024.2352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Vasculogenic mimicry (VM) alludes to the ability of cancer cells to organize on three-dimensional channel-like structures to obtain nutrients and oxygen. This mechanism confers an aggressive phenotype, metastatic potential, and resistance to chemotherapy resulting in a poor prognosis. Recent studies have been focused on the identification of microRNAs (miRNAs) that regulate the VM representing potential therapeutic targets in cancer. AREAS COVERED An overview of the roles of miRNAs on VM development and their functional relationships with tumor microenvironment. The functions of cancer stem-like cells in VM, and resistance to therapy are also discussed. Moreover, the modulation of VM by natural compounds is explored. The clinical significance of deregulated miRNAs as potential therapeutic targets in tumors showing VM is further highlighted. EXPERT OPINION The miRNAs are regulators of protein-encoding genes involved in VM; however, their specific expression signatures with clinical value in large cohorts of patients have not been established yet. We considered that genomic profiling of miRNAs could be useful to define some hallmarks of tumors such as stemness, drug resistance, and VM in cancer patients. However, additional studies are needed to establish the relevant role of miRNAs as effective therapeutic targets in tumors that have developed VM.
Collapse
Affiliation(s)
| | | | - Angeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Ciudad de México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México
| |
Collapse
|
7
|
Tulalamba W, Ngernsombat C, Larbcharoensub N, Janvilisri T. Transcriptomic profiling revealed FZD10 as a novel biomarker for nasopharyngeal carcinoma recurrence. Front Oncol 2023; 12:1084713. [PMID: 36776376 PMCID: PMC9909960 DOI: 10.3389/fonc.2022.1084713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of cancers that develops in the nasopharynx, the very upper part of the throat behind the nose. NPC is typically diagnosed in later stages of the disease and has a high rate of recurrence due to the location of the tumor growth site. In this study, we compared the gene expression profiles of NPC tissues from patients with and without recurrence to identify potential molecular biomarkers of NPC recurrence. METHODS Microarrays were used to analyze the expression of genes in 15 NPC tissues taken at the time of diagnosis and at the site of recurrence following therapeutic treatment. Pathway enrichment analysis was used to examine the biological interactions between the major differentially expressed genes. The target identified was then validated using immunohistochemistry on 86 NPC tissue samples. RESULTS Our data showed that the Wnt signaling pathway was enhanced in NPC tissues with recurrence. FZD10, a component of the Wnt signaling pathway, was significantly expressed in NPC tissues, and was significantly associated with NPC recurrence. CONCLUSION Our study provides new insights into the pathogenesis of NPC and identifies FZD10 as a potential molecular biomarker for NPC recurrence. FZD10 may be a promising candidate for NPC recurrence and a potential therapeutic target.
Collapse
Affiliation(s)
- Warut Tulalamba
- Siriraj Center of Research Excellence in Advanced Gene and Cell Therapy (Si-CORE-AGCT) and Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chawalit Ngernsombat
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Yao C, Wu S, Kong J, Sun Y, Bai Y, Zhu R, Li Z, Sun W, Zheng L. Angiogenesis in hepatocellular carcinoma: mechanisms and anti-angiogenic therapies. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0449. [PMID: 36647777 PMCID: PMC9843448 DOI: 10.20892/j.issn.2095-3941.2022.0449] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-associated death worldwide. Angiogenesis, the process of formation of new blood vessels, is required for cancer cells to obtain nutrients and oxygen. HCC is a typical hypervascular solid tumor with an aberrant vascular network and angiogenesis that contribute to its growth, progression, invasion, and metastasis. Current anti-angiogenic therapies target mainly tyrosine kinases, vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR), and are considered effective strategies for HCC, particularly advanced HCC. However, because the survival benefits conferred by these anti-angiogenic therapies are modest, new anti-angiogenic targets must be identified. Several recent studies have determined the underlying molecular mechanisms, including pro-angiogenic factors secreted by HCC cells, the tumor microenvironment, and cancer stem cells. In this review, we summarize the roles of pro-angiogenic factors; the involvement of endothelial cells, hepatic stellate cells, tumor-associated macrophages, and tumor-associated neutrophils present in the tumor microenvironment; and the regulatory influence of cancer stem cells on angiogenesis in HCC. Furthermore, we discuss some of the clinically approved anti-angiogenic therapies and potential novel therapeutic targets for angiogenesis in HCC. A better understanding of the mechanisms underlying angiogenesis may lead to the development of more optimized anti-angiogenic treatment modalities for HCC.
Collapse
Affiliation(s)
- Changyu Yao
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Shilun Wu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Jian Kong
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Yiwen Sun
- Department of Pathology, Peking University People’s Hospital, Peking University, Beijing 100044, China
| | - Yannan Bai
- Department of Hepatobiliary Pancreatic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Ruhang Zhu
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Zhuxin Li
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China
- Correspondence to: Wenbing Sun and Lemin Zheng, E-mail: and
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Sciences Center, Peking University, Beijing 100083, China
- Beijing Tiantan Hospital, China National Clinical Research Center of Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100050, China
- Correspondence to: Wenbing Sun and Lemin Zheng, E-mail: and
| |
Collapse
|
9
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
10
|
Wu H, Liu Y, Liao Z, Mo J, Zhang Q, Zhang B, Zhang L. The role of YAP1 in liver cancer stem cells: proven and potential mechanisms. Biomark Res 2022; 10:42. [PMID: 35672802 PMCID: PMC9171972 DOI: 10.1186/s40364-022-00387-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 02/08/2023] Open
Abstract
YAP1 (Yes-associated protein 1) is one of the principal factors that mediates oncogenesis by acting as a driver of gene expression. It has been confirmed to play an important role in organ volume control, stem cell function, tissue regeneration, tumorigenesis and tumor metastasis. Recent research findings show that YAP1 is correlated with the stemness of liver cancer stem cells, and liver cancer stem cells are closely associated with YAP1-induced tumor initiation and progression. This article reviews the advancements made in research on the mechanisms by which YAP1 promotes liver cancer stem cells and discusses some potential mechanisms that require further study.
Collapse
Affiliation(s)
- Haofeng Wu
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yachong Liu
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qiaofeng Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Bixiang Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lei Zhang
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Bililary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Shanxi Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China.
| |
Collapse
|
11
|
Yang X, Jiang Z, Li Y, Zhang Y, Han Y, Gao L. Non-coding RNAs regulating epithelial-mesenchymal transition: Research progress in liver disease. Biomed Pharmacother 2022; 150:112972. [PMID: 35447551 DOI: 10.1016/j.biopha.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic liver injury could gradually progress to liver fibrosis, cirrhosis, and even hepatic carcinoma without effective treatment. The massive production and activation of abnormal cell differentiation is vital to the procession of liver diseases. Epithelial-mesenchymal transformation (EMT) is a biological process in which differentiated epithelial cells lose their epithelial characteristics and acquire mesenchymal cell migration capacity. Emerging evidence suggests that EMT not only occurs in the process of hepatocellular carcinogenesis, but also appears in liver cells transforming to myofibroblasts, a core event of liver disease. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are important regulatory factors in EMT, which can regulate target gene expression by binding with RNA single-stranded. Various studies had shown that ncRNA regulation of EMT plays a key role in liver disease development, and many effective ncRNAs have been identified as promising biomarkers for the diagnosis and treatment of liver disease. In this review, we focus on the relationship between the different ncRNAs and EMT as well as the specific molecular mechanism in the liver diseases to enrich the pathological progress of liver diseases and provide reference for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiang Yang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Zhitao Jiang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingchun Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yi Han
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Liyuan Gao
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
12
|
Tang HX, Yi FZ, Huang ZS, Huang GL. Role of Hippo signaling pathway in occurrence, development, and treatment of primary hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2022; 30:34-42. [DOI: 10.11569/wcjd.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hippo signal transduction pathway, first discovered in drosophila, is a highly conserved signaling pathway that inhibits cell growth. Its core molecules include Hpo, Sav, Wts, Mats, and downstream effector factor YAP/TAZ. Corresponding homologous analogs in humans are STE20 protein-like kinase 1/2, Salvatore family 1, large tumor suppressor gene 1/2 kinase, and MOB kinase activator 1A/1B. Inactivation of this pathway promotes the survival, proliferation, invasive migration, and metastasis of cancer cells. This process can be seen in liver cancer, lung cancer, colorectal cancer, breast cancer, pancreatic cancer, melanoma, glioma, and other cancers, which can lead to the occurrence of resistance to chemotherapy, radiotherapy, or immunotherapy. This paper aims to review the role of the Hippo signaling pathway in the occurrence, development, and treatment of liver cancer, in order to provide reference for new targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Hui-Xian Tang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Fu-Zhen Yi
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenter-ology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Gui-Liu Huang
- Department of Gastroenter-ology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol 2021; 12:32. [PMID: 34604862 PMCID: PMC8429367 DOI: 10.1007/s12672-021-00429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Frizzled (FZD) transmembrane receptors are well known for their role in β-catenin signaling and development and now understanding of their role in the context of cancer is growing. FZDs are often associated with the process of epithelial to mesenchymal transition (EMT) through β-catenin, but some also influence EMT through non-canonical pathways. With ten different FZDs, there is a wide range of activity from oncogenic to tumor suppressive depending on the tissue context. Alterations in FZD signaling can occur during development of premalignant lesions, supporting their potential as targets of chemoprevention agents. Agonizing or antagonizing FZD activity may affect EMT, which is a key process in lesion progression often targeted by chemoprevention agents. Recent studies identified a specific FZD as important for activity of an EMT inhibiting chemopreventive agent and other studies have highlighted the previously unrecognized potential for targeting small molecules to FZD receptors. This work demonstrates the value of investigating FZDs in chemoprevention and here we provide a review of FZDs in cancer EMT and their potential as chemoprevention targets.
Collapse
Affiliation(s)
- K. Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. Elango
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. J. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - M. A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| |
Collapse
|
14
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
15
|
Inhibiting roles of FOXA2 in liver cancer cell migration and invasion by transcriptionally suppressing microRNA-103a-3p and activating the GREM2/LATS2/YAP axis. Cytotechnology 2021; 73:523-537. [PMID: 34349344 DOI: 10.1007/s10616-021-00475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Forkhead box A2 (FOXA2) has emerged as a tumor inhibitor in several human malignancies. This work focused on the effect of FOXA2 on liver cancer (LC) cell invasion and migration and the involving molecules. FOXA2 expression in LC tissues and cell lines was determined. The potential target microRNA (miRNA) of FOXA2 was predicted via bioinformatic analysis and validated through a ChIP assay. The mRNA target of miRNA-103a-3p was predicted via bioinformatic analysis and confirmed via a luciferase assay. Altered expression of FOXA2, miR-103a-3p and GREM2 was introduced in cells to identify their roles in LC cell migration and invasion. Consequently, FOXA2 and GREM2 were poorly expressed while miR-103a-3p was highly expressed in LC samples. Overexpression of FOXA2 or GREM2 suppressed migration and invasion of LC cells, while up-regulation of miR-103a-3p led to inverse trends. FOXA2 transcriptionally suppressed miR-103a-3p to increase GREM2 expression. Silencing of GREM2 blocked the effects of FOXA2. GREM2 increased LATS2 activity and YAP phosphorylation and degradation. To conclude, this study demonstrated that FOXA2 suppressed miR-103a-3p transcription to induce GREM2 upregulation, which increased LATS2 activity and YAP phosphorylation to inhibit migration and invasion of LC cells.
Collapse
|
16
|
Tuluhong D, Chen T, Wang J, Zeng H, Li H, Dunzhu W, Li Q, Wang S. FZD2 promotes TGF-β-induced epithelial-to-mesenchymal transition in breast cancer via activating notch signaling pathway. Cancer Cell Int 2021; 21:199. [PMID: 33832493 PMCID: PMC8033683 DOI: 10.1186/s12935-021-01866-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/06/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor 2 (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our current study was to detect the functions of FZD2 in BC and explore its underlying molecular mechanism. METHODS The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC), respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were separately conducted to detect cell viability, invasion, migration, apoptosis and cell cycle distribution. The levels of Epithelial-mesenchymal transition (EMT) biomarkers were examined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo. RESULTS FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis in BC patients. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT process in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. CONCLUSION FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.
Collapse
Affiliation(s)
- Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Huijuan Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Wangmu Dunzhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China
| | - Qiurong Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, China.
| |
Collapse
|
17
|
Dong D, Na L, Zhou K, Wang Z, Sun Y, Zheng Q, Gao J, Zhao C, Wang W. FZD5 prevents epithelial-mesenchymal transition in gastric cancer. Cell Commun Signal 2021; 19:21. [PMID: 33618713 PMCID: PMC7898745 DOI: 10.1186/s12964-021-00708-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Background Frizzled (FZD) proteins function as receptors for WNT ligands. Members in FZD family including FZD2, FZD4, FZD7, FZD8 and FZD10 have been demonstrated to mediate cancer cell epithelial-mesenchymal transition (EMT). Methods CCLE and TCGA databases were interrogated to reveal the association of FZD5 with EMT. EMT was analyzed by investigating the alterations in CDH1 (E-cadherin), VIM (Vimentin) and ZEB1 expression, cell migration and cell morphology. Transcriptional modulation was determined by ChIP in combination with Real-time PCR. Survival was analyzed by Kaplan–Meier method. Results In contrast to other FZDs, FZD5 was identified to prevent EMT in gastric cancer. FZD5 maintains epithelial-like phenotype and is negatively modulated by transcription factors SNAI2 and TEAD1. Epithelial-specific factor ELF3 is a downstream effecter, and protein kinase C (PKC) links FZD5 to ELF3. ELF3 represses ZEB1 expression, further guarding against EMT. Moreover, FZD5 signaling requires its co-receptor LRP5 and WNT7B is a putative ligand for FZD5. FZD5 and ELF3 are associated with longer survival, whereas SNAI2 and TEAD1 are associated with shorter survival. Conclusions Taken together, FZD5-ELF3 signaling blocks EMT, and plays a potential tumor-suppressing role in gastric cancer. ![]()
Video Abstract
Collapse
Affiliation(s)
- Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Lei Na
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Kailing Zhou
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Zhuo Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Jian Gao
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People's Republic of China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
18
|
Zheng N, Zhang S, Wu W, Zhang N, Wang J. Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacol Res 2021; 166:105507. [PMID: 33610718 DOI: 10.1016/j.phrs.2021.105507] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a typical hyper-vascular solid tumor; aberrantly rich in tumor vascular network contributes to its malignancy. Conventional anti-angiogenic therapies seem promising but transitory and incomplete efficacy on HCC. Vasculogenic mimicry (VM) is one of functional microcirculation patterns independent of endothelial vessels which describes the plasticity of highly aggressive tumor cells to form vasculogenic-like networks providing sufficient blood supply for tumor growth and metastasis. As a pivotal alternative mechanism for tumor vascularization when tumor cells undergo lack of oxygen and nutrients, VM has an association with the malignant phenotype and poor clinical outcome for HCC, and may challenge the classic anti-angiogenic treatment of HCC. Current studies have contributed numerous findings illustrating the underlying molecular mechanisms and signaling pathways supporting VM in HCC. In this review, we summarize the correlation between epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and VM, the role of hypoxia and extracellular matrix remodeling in VM, the involvement of adjacent non-cancerous cells, cytokines and growth factors in VM, as well as the regulatory influence of non-coding RNAs on VM in HCC. Moreover, we discuss the clinical significance of VM in practice and the potential therapeutic strategies targeting VM for HCC. A better understanding of the mechanism underlying VM formation in HCC may optimize anti-angiogenic treatment modalities for HCC.
Collapse
Affiliation(s)
- Ning Zheng
- Department of Pharmacology, The School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Shaoqin Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Wenda Wu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Nan Zhang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jichuang Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
19
|
Qiao K, Liu Y, Xu Z, Zhang H, Zhang H, Zhang C, Chang Z, Lu X, Li Z, Luo C, Liu Y, Yang C, Sun T. RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis 2021; 24:83-96. [PMID: 32920668 DOI: 10.1007/s10456-020-09744-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022]
Abstract
Vasculogenic mimicry (VM) formed by aggressive tumor cells to mimic vasculogenic networks plays an important role in the tumor malignancy of HCC. However, the pathogenesis underlying VM is complex and has not been fully defined. m6A is a common mRNA modification and has many biological effects. However, the relationship between m6A and VM remains unclear. In this research, we found that m6A methyltransferase METTL3 in HCC tissues was positively correlated with VM. The m6A level of mRNA significantly increased in 3D cultured cells treated with VEGFa and was related to VM formation. Transcriptome sequencing analysis of 3D cultured cells with knockdown Mettl3 showed that the Hippo pathway was involved in m6A-mediated VM formation. Further mechanism research indicated that the m6A modification of YAP1 mRNA affected the translation of YAP1 mRNA. In conclusion, m6A methylation plays a key role in VM formation in HCC. METTL3 and YAP1 could be potential therapeutic targets via impairing VM formation in anti-metastatic strategies.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Animals
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Hippo Signaling Pathway
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Methylation
- Methyltransferases/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Mimicry
- Prognosis
- Protein Biosynthesis
- Protein Serine-Threonine Kinases/metabolism
- RNA/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- Mice
Collapse
Affiliation(s)
- Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yantao Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zheng Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Haohao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Chao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
| | - Zhi Chang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xinyan Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
| | - Zhongwei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
| | - Ce Luo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
| | - Yanrong Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, No.89, Guhuai Road, Rencheng District, Jining, Shandong, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
20
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
21
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Sun Y, Wang W, Zhao C. Frizzled Receptors in Tumors, Focusing on Signaling, Roles, Modulation Mechanisms, and Targeted Therapies. Oncol Res 2020; 28:661-674. [PMID: 32998794 PMCID: PMC7962935 DOI: 10.3727/096504020x16014648664459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt molecules play crucial roles in development and adult homeostasis through their receptors Frizzled proteins (Fzds). Fzds mediate canonical β-catenin pathway and various noncanonical β-catenin-independent pathways. Aberrant Fzd signaling is involved in many diseases including cancer. Wnt/β-catenin is a well-established oncogenic pathway involved in almost every aspect of tumor development. However, Fzd-mediated noncanonical Wnt pathways function as both tumor promoters and tumor suppressors depending on cellular context. Fzd-targeted therapies have proven to be effective on cultured tumor cells, tumor cell xenografts, mouse tumor models, and patient-derived xenografts (PDX). Moreover, Fzd-targeted therapies synergize with chemotherapy in preclinical models. However, the occurrence of fragility fractures in patients treated with Fzd-targeted agents such as OMP-54F28 and OMP-18R5 limits the development of this combination. Along with new insights on signaling, roles, and modulation mechanisms of Fzds in human tumors, more Fzd-related therapeutic targets will be developed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| |
Collapse
|
23
|
Li Q, Huyan T, Cai S, Huang Q, Zhang M, Peng H, Zhang Y, Liu N, Zhang W. The role of exosomal miR-375-3p: A potential suppressor in bladder cancer via the Wnt/β-catenin pathway. FASEB J 2020; 34:12177-12196. [PMID: 32716585 DOI: 10.1096/fj.202000347r] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
miR-375-3p is a significantly downregulated miRNA in bladder cancer (BC). However, its role in BC regulation is still unclear. In this study, we reported that miR-375-3p overexpression inhibited proliferation and migration and promoted apoptosis in BC cells. Frizzled-8 (FZD8) gene is identified as the direct miR-375-3p targeting gene. miR-375-3p blocks the Wnt/β-catenin pathway and downstream molecules Cyclin D1 and c-Myc by inhibiting the expression of FZD8 directly, it could increase caspase 1 and caspase 3 expression and promote T24 cell apoptosis as well. miR-375-3p also showed a significant inhibitory effect in vivo in bladder tumor-bearing nude mice, as demonstrated by the reduced tumor volume and Ki67 proliferation index in tumor tissue. Collectively, miR-375-3p is a suppressor of BC that inhibits proliferation and metastasis, and promotes apoptosis in BC cells as well as suppresses tumor growth in a T24 xenograft mouse model, which could be used as a potential therapeutic approach for BC in future.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ting Huyan
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Suna Cai
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiuping Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Mengzhao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hourong Peng
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yujun Zhang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ningjing Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| |
Collapse
|
24
|
Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 2020; 147:104378. [PMID: 32653434 PMCID: PMC7347497 DOI: 10.1016/j.micpath.2020.104378] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.
Collapse
|
25
|
Zhang B, Huang L, Tu J, Wu T. Hypoxia-Induced Placenta-Specific microRNA (miR-512-3p) Promotes Hepatocellular Carcinoma Progression by Targeting Large Tumor Suppressor Kinase 2. Onco Targets Ther 2020; 13:6073-6083. [PMID: 32612368 PMCID: PMC7323795 DOI: 10.2147/ott.s254612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Sustained proliferation and active metastasis are hallmarks of cancer, and they pose major challenges to the development of treatments and a cure for hepatocellular carcinoma (HCC). Thus, the mechanisms of proliferation, migration, and invasion of cancer cells need to be investigated. Many studies indicate that dysregulation of microRNA plays important roles in the progression of HCC, but the role of placenta-specific microRNA (miR-512-3p) in HCC has not been systematically investigated. Purpose In the current study, the expression, biological function, and mechanisms of miR-512-3p involvement in HCC were investigated. Methods Real-time quantitative polymerase chain reaction assays were conducted to determine miR-512-3p levels in HCC tissues and cell lines. The StarBase V3.0 online platform was used to compare miR-512-3p levels in HCC tissues with TCGA data and to identify potential miR-512-3p target genes. Associations between miR-512-3p and clinicopathological characteristics were analyzed statistically. MTT, ethynyl deoxyuridine, and transwell assays were performed to assess cell viability, proliferation, migration, and invasion. The luciferase reporter gene assay was used to verify target genes. Recuse assays were performed to confirm whether large tumor suppressor kinase 2 (LATS2) participated in the regulatory effects of miR-512-3p on HCC cell proliferation and motility, and whether miR-512-3p mediated the tumor-promoting effects of hypoxia. Results miR-512-3p was upregulated in HCC and it was associated with worse survival and unfavorable clinicopathological characteristics. Functional assays indicated that miR-512-3p contributed to HCC cell proliferation, migration, and invasion. Mechanistically, LATS2—a downstream target of miR-512-3p—mediated the tumor-promoting effects of miR-512-3p in HCC. Hypoxia could elevate miR-512-3p levels in HCC cells, and miR-512-3p partially mediated the tumor-promoting effects of hypoxia. Conclusion Hypoxia-induced miR-512-3p contributes to HCC cell proliferation, migration, and invasion by targeting LATS2 and inhibiting the Hippo/yes-associated protein 1 pathways.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Clinical Medicine, Queen Mary Institute, Nanchang University, Nanchang, Jiangxi Province 330000, People's Republic of China
| | - Liang Huang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jiangbo Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Tianming Wu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
26
|
Characterizing the Role of SMYD2 in Mammalian Embryogenesis-Future Directions. Vet Sci 2020; 7:vetsci7020063. [PMID: 32408548 PMCID: PMC7357037 DOI: 10.3390/vetsci7020063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022] Open
Abstract
The SET and MYND domain-containing (SMYD) family of lysine methyltransferases are essential in several mammalian developmental pathways. Although predominantly expressed in the heart, the role of SMYD2 in heart development has yet to be fully elucidated and has even been shown to be dispensable in a murine Nkx2-5-associated conditional knockout. Additionally, SMYD2 was recently shown to be necessary not only for lymphocyte development but also for the viability of hematopoietic leukemias. Based on the broad expression pattern of SMYD2 in mammalian tissues, it is likely that it plays pivotal roles in a host of additional normal and pathological processes. In this brief review, we consider what is currently known about the normal and pathogenic functions of SMYD2 and propose specific future directions for characterizing its role in embryogenesis.
Collapse
|
27
|
Xu M, Zhu S, Xu R, Lin N. Identification of CELSR2 as a novel prognostic biomarker for hepatocellular carcinoma. BMC Cancer 2020; 20:313. [PMID: 32293343 PMCID: PMC7161135 DOI: 10.1186/s12885-020-06813-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background CELSR2 is postulated to be a receptor involved in contact-mediated communication; however, the specific function of this particular member has not been determined in hepatocellular carcinoma (HCC). Methods Here, we explored the expression and function of CELSR2 in HCC patients through data mining and examined the results using clinical samples and in vitro experiments. Results It was found that CELSR2 mRNA and protein expression levels were significantly higher in cancerous tissue than in normal tissue. The increased mRNA expression of CELSR2 was significantly associated with overall survival (OS) in HCC patients. Moreover, the genetic alteration rate of CELSR2 gene in HCC can reach 8%, and these alterations would deeply influence its neighboring genes, then jointly affecting the occurrence and development of tumor through cell adhesion and numerous common carcinogenic pathways. Our in vitro results indicated that the depletion of CELSR2 inhibited liver cancer cell proliferation and invasion. Univariate and multivariate Cox regression analyses showed that CELSR2 could be viewed as an independent risk factor for HCC patients. Conclusions This study demonstrated that data mining could efficiently reveal the roles of CELSR2 in HCC and its potential regulatory networks. The CELSR2 protein level may serve as a novel prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Mingxing Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Shu Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Ruiyun Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
28
|
The Prospect of Identifying Resistance Mechanisms for Castrate-Resistant Prostate Cancer Using Circulating Tumor Cells: Is Epithelial-to-Mesenchymal Transition a Key Player? Prostate Cancer 2020; 2020:7938280. [PMID: 32292603 PMCID: PMC7149487 DOI: 10.1155/2020/7938280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is initially driven by excessive androgen receptor (AR) signaling with androgen deprivation therapy (ADT) being a major therapeutic approach to its treatment. However, the development of drug resistance is a significant limitation on the effectiveness of both first-line and more recently developed second-line ADTs. There is a need then to study AR signaling within the context of other oncogenic signaling pathways that likely mediate this resistance. This review focuses on interactions between AR signaling, the well-known phosphatidylinositol-3-kinase/AKT pathway, and an emerging mediator of these pathways, the Hippo/YAP1 axis in metastatic castrate-resistant PCa, and their involvement in the regulation of epithelial-mesenchymal transition (EMT), a feature of disease progression and ADT resistance. Analysis of these pathways in circulating tumor cells (CTCs) may provide an opportunity to evaluate their utility as biomarkers and address their importance in the development of resistance to current ADT with potential to guide future therapies.
Collapse
|
29
|
Liu T, Zhao X, Zheng X, Zheng Y, Dong X, Zhao N, Liao S, Sun B. The EMT transcription factor, Twist1, as a novel therapeutic target for pulmonary sarcomatoid carcinomas. Int J Oncol 2020; 56:750-760. [PMID: 32124963 PMCID: PMC7010216 DOI: 10.3892/ijo.2020.4972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Pulmonary sarcomatoid carcinomas (PSCs) are a rare subtype of non‑small‑cell lung cancer and are typically biphasic neoplasms. No effective treatment for PSCs is currently available in clinical practice. The expression of the epithelial‑mesenchymal transition (EMT) transcription factors, Twist1, Slug and Snail, as well as the EMT phenotype and vasculogenic mimicry (VM) were analysed in 41 PSC and 79 pulmonary squamous carcinoma (PSCC) samples. Compared with the PSCCs, the PSCs exhibited an EMT phenotype and VM, and they also exhibited an increased expression of the Twist1, Slug, Snail and VM markers. Twist1 expression was associated with metastasis and TNM stage. Twist1‑positive patients exhibited a poorer prognosis for overall survival (OS) than those with Twist1‑negative PSCs. Transforming growth factor β1 (TGFβ1) was used to induce an EMT transition in a PSCC cell line. SK‑MES‑1 cells treated with TGFβ1 exhibited an increased expression of Twist1. The EMT phenotype, VM and increased migratory and invasive abilities were induced following TGFβ1 treatment. Importantly, in cells treated with TGFβ1, the EMT phenotype was reversed, VM marker expression was decreased, and the migratory and invasive ability of the PSCC cell line was decreased following Twist1 knockdown. Collectively, this study provides a new perspective of Twist1 in the aggressiveness of PSCs. The identification of Twist1 as an independent marker of poor prognoses may lead to the development of novel strategies for improving the treatment of patients with PSC.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xu Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yanjun Zheng
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Shihan Liao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, P.R. China
| |
Collapse
|
30
|
Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C, Carlos-Reyes Á. Regulation Networks Driving Vasculogenic Mimicry in Solid Tumors. Front Oncol 2020; 9:1419. [PMID: 31993365 PMCID: PMC6970938 DOI: 10.3389/fonc.2019.01419] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Vasculogenic mimicry (VM) is a mechanism whereby cancer cells form microvascular structures similar to three-dimensional channels to provide nutrients and oxygen to tumors. Unlike angiogenesis, VM is characterized by the development of new patterned three-dimensional vascular-like structures independent of endothelial cells. This phenomenon has been observed in many types of highly aggressive solid tumors. The presence of VM has also been associated with increased resistance to chemotherapy, low survival, and poor prognosis. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNAs that regulate gene expression at the post-transcriptional level through different pathways. In recent years, these tiny RNAs have been shown to be expressed aberrantly in different human malignancies, thus contributing to the hallmarks of cancer. In this context, miRNAs and lncRNAs can be excellent biomarkers for diagnosis, prognosis, and the prediction of response to therapy. In this review, we discuss the role that the tumor microenvironment and the epithelial-mesenchymal transition have in VM. We include an overview of the mechanisms of VM with examples of diverse types of tumors. Finally, we describe the regulation networks of lncRNAs-miRNAs and their clinical impact with the VM. Knowing the key genes that regulate and promote the development of VM in tumors with invasive, aggressive, and therapy-resistant phenotypes will facilitate the discovery of novel biomarker therapeutics against cancer as well as tools in the diagnosis and prognosis of patients.
Collapse
Affiliation(s)
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico, Mexico
| | - Raúl García-Vázquez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Yarely M. Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico, Mexico
| | - Dolores Aguilar-Cazares
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico
| | - Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico, Mexico
| |
Collapse
|
31
|
Yang F, Zhang Y, Ren H, Wang J, Shang L, Liu Y, Zhu W, Shi X. Ischemia reperfusion injury promotes recurrence of hepatocellular carcinoma in fatty liver via ALOX12-12HETE-GPR31 signaling axis. J Exp Clin Cancer Res 2019; 38:489. [PMID: 31831037 PMCID: PMC6909624 DOI: 10.1186/s13046-019-1480-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ischemia reperfusion injury (IRI) has been shown to increase the risk of tumor recurrence after liver surgery. Also, nonalcoholic fatty liver disease (NAFLD) is associated with increased HCC recurrence. ALOX12-12-HETE pathway is activated both in liver IRI and NASH. Also, ALOX12-12-HETE has been shown to mediate tumorigenesis and progression. Therefore, our study aims to investigate whether the ALOX12-12-HETE-GPR31 pathway involved in IRI induced HCC recurrence in NAFLD. METHODS HCC mouse model was used to mimic the HCC recurrence in NAFLD. Western Blot, qPCR, Elisa and Immunofluorescence analysis were conducted to evaluate the changes of multiple signaling pathways during HCC recurrence, including ALOX12-12-HETE axis, EMT, MMPs and PI3K/AKT/NF-κB signaling pathway. We also measured the expression and functional changes of GPR31 by siRNA. RESULTS ALOX12-12-HETE pathway was activated in liver IRI and its activation was further enhanced in NAFLD, which induced more severe HCC recurrence in fatty livers than normal livers. Inhibition of ALOX12-12-HETE by ML355 reduced the HCC recurrence in fatty livers. In vitro studies showed that 12-HETE increased the expression of GPR31 and induced epithelial-mesenchymal transition (EMT) and matrix metalloprotein (MMPs) by activating PI3K/AKT/NF-κB pathway. Furthermore, knockdown of GPR31 in cancer cells inhibited the HCC recurrence in NAFLD. CONCLUSIONS ALOX12-12-HETE-GPR31 played an important role in HCC recurrence and might be a potential therapeutic target to reduce HCC recurrence after surgery in fatty livers.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yuheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Longcheng Shang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Wei Zhu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, 210008 Nanjing, Jiangsu Province, China
| |
Collapse
|
32
|
Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer. Anal Cell Pathol (Amst) 2019; 2019:1907698. [PMID: 31871879 PMCID: PMC6913338 DOI: 10.1155/2019/1907698] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/27/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Kaempferol is a well-known natural flavonol reported to be a potential treatment for multiple cancers. In this study, we demonstrated that cell growth of androgen-sensitive LNCaP cells could be inhibited 33% by 5 μM kaempferol, around 60% by 10 μM kaempferol, and almost 100% by 15 μM kaempferol. Also, kaempferol showed relatively limited effect on PC-3 cells and nonmalignant RWPE-1 cells. In the presence of DHT, the IC50 for kaempferol was 28.8 ± 1.5 μM in LNCaP cells, 58.3 ± 3.5 μM in PC-3 cells, and 69.1 ± 1.2 μM in RWPE-1 cells, respectively. Kaempferol promotes apoptosis of LNCaP cells in a dose-dependent manner in the presence of dihydrotestosterone (DHT). Then, luciferase assay data showed that kaempferol could inhibit the activation of androgen receptors induced by DHT significantly. The downstream targets of androgen receptors, such as PSA, TMPRSS2, and TMEPA1, were found decreased in the presence of kaempferol in qPCR data. It was then confirmed that the protein level of PSA was decreased. Kaempferol inhibits AR protein expression and nuclear accumulation. Kaempferol suppressed vasculogenic mimicry of PC-3 cells in an in vitro study. In conclusion, kaempferol is a promising therapeutic candidate for treatment of prostate cancer, where the androgen signaling pathway as well as vasculogenic mimicry are involved.
Collapse
|
33
|
Ou H, Chen Z, Xiang L, Fang Y, Xu Y, Liu Q, Hu Z, Li X, Huang Y, Yang D. Frizzled 2-induced epithelial-mesenchymal transition correlates with vasculogenic mimicry, stemness, and Hippo signaling in hepatocellular carcinoma. Cancer Sci 2019; 110:1169-1182. [PMID: 30677195 PMCID: PMC6447835 DOI: 10.1111/cas.13949] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/21/2022] Open
Abstract
Prior observation has indicated that Frizzled 2 (FZD2)‐induced epithelial‐mesenchymal transition (EMT) could be a key step in metastasis and early recurrence of hepatocellular carcinoma (HCC). However, the mechanism underlying tumor development and progression due to aberrant FZD2 expression is poorly defined. Here, we provide evidence that FZD2 is a driver for EMT, cancer stem cell properties, and vasculogenic mimicry (VM) in HCC. We found that FZD2 was highly expressed in two cohorts of Chinese hepatitis B virus‐related HCC patients, and that high FZD2 expression was associated with poor prognosis. Concerning the mechanism, gain‐ and loss‐of‐function experiments showed the oncogenic action of FZD2 in HCC cell proliferation, apoptosis, migration, and invasion. Further investigations in vitro and in vivo suggested that FZD2 promotes the EMT process, enhances stem‐like properties, and confers VM capacity to HCC cells. Notably, integrative RNA sequencing analysis of FZD2‐knockdown cells indicated the enrichment of Hippo signaling pathway. Taken together, our data suggest for the first time that FZD2 could promote clinically relevant EMT, CD44+ stem‐like properties, and the VM phenotype in HCC involving a potential Hippo signaling pathway‐dependent mechanism, and should be considered as a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Huohui Ou
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhanjun Chen
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yinghao Fang
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyan Xu
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qin Liu
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhigang Hu
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Xianghong Li
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yu Huang
- Department of Laboratory Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|