1
|
Kafida M, Karela M, Giakountis A. RNA-Independent Regulatory Functions of lncRNA in Complex Disease. Cancers (Basel) 2024; 16:2728. [PMID: 39123456 PMCID: PMC11311644 DOI: 10.3390/cancers16152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
During the metagenomics era, high-throughput sequencing efforts both in mice and humans indicate that non-coding RNAs (ncRNAs) constitute a significant fraction of the transcribed genome. During the past decades, the regulatory role of these non-coding transcripts along with their interactions with other molecules have been extensively characterized. However, the study of long non-coding RNAs (lncRNAs), an ncRNA regulatory class with transcript lengths that exceed 200 nucleotides, revealed that certain non-coding transcripts are transcriptional "by-products", while their loci exert their downstream regulatory functions through RNA-independent mechanisms. Such mechanisms include, but are not limited to, chromatin interactions and complex promoter-enhancer competition schemes that involve the underlying ncRNA locus with or without its nascent transcription, mediating significant or even exclusive roles in the regulation of downstream target genes in mammals. Interestingly, such RNA-independent mechanisms often drive pathological manifestations, including oncogenesis. In this review, we summarize selective examples of lncRNAs that regulate target genes independently of their produced transcripts.
Collapse
Affiliation(s)
| | | | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Lei J, Qiao S. Circular RNA circ_001621 acts as a tumor promoter in lung cancer by regulating the miR-199a-3p/GREM1 axis. Arch Med Sci 2024; 20:876-886. [PMID: 39050152 PMCID: PMC11264106 DOI: 10.5114/aoms/174052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 07/27/2024] Open
Abstract
Introduction Investigating how circular RNAs (circRNAs) function during tumorigenesis may help uncover novel diagnostic markers for cancer treatment. The oncogenic role of circ_001621 has been verified in osteosarcoma, but its role in lung cancer has yet to be reported. This research is the first to investigate the circ_001621 expression and regulatory mechanism in lung cancer. Material and methods RT-qPCR was performed to assess the circ_001621 expression levels in lung cancer cells and tissues. The influence of circ_001621 on the viability, invasive ability, and apoptosis of lung cancer cells was investigated through CCK-8, transwell, and caspase-3 activity experiments, respectively. A xenograft nude mouse model was designed to evaluate how circ_001621 functions in vivo. The RIP and luciferase reporter experiments confirmed the binding among circRNA, miRNA, and mRNA. Results Circ_001621 was dramatically upregulated in lung cancer tissues and cells. Silencing circ_001621 in lung cancer cells reduced their viability and invasive ability but stimulated apoptosis. The nude mice experiment demonstrated that circ_001621 downregulation considerably stunted tumor growth in vivo. Additionally, circ_001621 could sponge miR-199a-3p. The inhibitor of miR-199a-3p improved the viability and invasion of cells while inhibiting apoptosis. Moreover, it offset the impact of circ_001621 on lung cancer cells. MiR-199a-3p was observed to target GREM1, and the downregulation of GREM1 could counteract miR-199a-3p-induced effects on lung cancer cells. Conclusions The circ_001621/miR-199a-3p/GREM1 axis exhibits an association with the development of lung cancer, suggesting its potential as a future therapeutic target for the disease.
Collapse
Affiliation(s)
- Jun Lei
- Department of Respiratory Medicine, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Song Qiao
- Massage Department, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
4
|
Xiao G, Zhang T, Tan B, Hao H. Hsa_circ_0026344 suppresses gastric cancer progression via modulating the miR-1290/FBP2 axis. Histol Histopathol 2023; 38:1017-1028. [PMID: 36515277 DOI: 10.14670/hh-18-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are a novel type of noncoding RNAs and play important roles in tumorigenesis, including gastric cancer (GC). However, the functions of most circRNAs remain poorly understood. In our study, we mainly learn the influence of hsa_circ_0026344 (circ_0026344) in GC progression. METHODS Circ_0026344, miR-1290 and Fructose-1,6-bisphosphatase 2 (FBP2) expression was determined by quantitative real-time polymerase chain reaction (qRT-PCR). GC cell proliferation, migration, and invasion were detected by colony formation, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. The interaction between circ_0026344 and miR-1290 complex was evaluated by RNA pull-down assay. The interaction of miR-1290 with circ_0026344 or FBP2 was detected using dual-luciferase reporter assay. A xenograft model was established to determine the effect of circ_0026344 on GC tumor growth in vivo. RESULTS Circ_0026344 expression was dramatically decreased in GC cells and tissues. Circ_0026344 overexpression inhibited GC cell proliferation, migration and invasion. MiR-1290 was predicted as a target of circ_0026344 and miR-1290 overexpression attenuated the anti-tumor effect of circ_0026344 on GC cells. Furthermore, we predicted FBP2 as the target of miR-1290. FBP2 knockdown reversed the effects of circ_0026344 knockdown on GC cell malignant behaviors. Functional analysis showed that circ_0026344 upregulated FBP2 expression via miR-1290. Additionally, in vivo studies demonstrated that circ_0026344 suppressed GC tumor progression. CONCLUSION In conclusion, circ_0026344 inhibited GC cell proliferation via the miR-1290/FBP2 axis, which might provide a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- GaoChun Xiao
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - TingTing Zhang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - BinBin Tan
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Hu Hao
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China.
| |
Collapse
|
5
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
6
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
7
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
9
|
Liu Q. The Emerging Landscape of Long Non-Coding RNAs in Wilms Tumor. Front Oncol 2022; 11:780925. [PMID: 35127486 PMCID: PMC8807488 DOI: 10.3389/fonc.2021.780925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are transcripts of nucleic acid sequences with a length of more than 200 bp, which have only partial coding capabilities. Recent studies have shown that lncRNAs located in the nucleus or cytoplasm can be used as gene expression regulatory elements due to their important regulatory effects in a variety of biological processes. Wilms tumor (WT) is a common abdominal tumor in children whose pathogenesis remains unclear. In recent years, many specifically expressed lncRNAs have been found in WT, which affect the occurrence and development of WT. At the same time, lncRNAs may have the capacity to become novel biomarkers for the diagnosis and prognosis of WT. This article reviews related research progress on the relationship between lncRNAs and WT, to provide a new direction for clinical diagnosis and treatment of WT.
Collapse
|
10
|
Feng SG, Bhandari R, Ya L, Zhixuan B, Qiuhui P, Jiabei Z, Sewi M, Ni Z, Jing W, Fenyong S, Ji M, Bhandari R. SNHG9 promotes Hepatoblastoma Tumorigenesis via miR-23a-5p/Wnt3a Axis. J Cancer 2021; 12:6031-6049. [PMID: 34539877 PMCID: PMC8425203 DOI: 10.7150/jca.60748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Hepatoblastoma is a common hepatic tumor occurring in children between 0-5 years. Accumulating studies have shown lncRNA's potential role in distinct cancer progression and development, including hepatoblastoma. SnoRNA host gene 9 (SNHG9) is associated with the progression of distinct human cancers, but, its specific molecular mechanisms in hepatoblastoma is not unknown. Methods: In this study, we estimated SNHG9 expression in hepatoblastoma tissue and cell lines by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). Next, we downregulated and upregulated SNHG9 expression in hepatoblastoma cell lines and then determined cell proliferation (CCK-8), colony formation, and cellular apoptosis activity. The dual luciferase reporter activity, RNA immunoprecipitation (RIP), biotin RNA pull down and Spemann's Pearson correlation coefficient assay were performed to establish the interaction between SNHG9, WNt3a and miR- 23a-5p. A xenograft in-vivo tumorgenicity test was performed to elucidate the role of SNHG9 hepatoblastoma in tumorigenesis. SNHG9 role in Cisplatin drug resistance in hepatoblastoma was also determined. Results: SNHG9 was significantly upregulated in hepatoblastoma tissue and cell lines. SNHG9 overexpression on HUH6 & HepG2 resulted in a significant increase in cell proliferation and clonogenic activity while SNHG9 knock down resulted in a sustained inhibition of cell proliferation and clonogenic activity. Dual luciferase activity, RNA immunoprecipitation and biotin pull down confirmed the direct interaction of miR-23a-5p with SNHG9. The xenograft tumorgenicity test showed SNHG9 downregulation significantly inhibited the tumor growth in BALB/c mice. ROC and Kaplan-Meier analysis showed potential prognostic and diagnostic importance of SNHG9 in hepatoblastoma. Conclusion: We concluded that SNHG9/miR-23a-5p/Wnt3a axis promotes the progression hepatoblastoma tumor.
Collapse
Affiliation(s)
- Sun Gui Feng
- Department of Clinical Laboratory Medicine, Chengdu Second Peoples Hospital, Chengdu, Sichuan 610021, PR China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| | - Rajeev Bhandari
- Department of Clinical Laboratory Medicine, Chengdu Second Peoples Hospital, Chengdu, Sichuan 610021, PR China
| | - Liu Ya
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| | - Bian Zhixuan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Pan Qiuhui
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhu Jiabei
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Mao Sewi
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Zhen Ni
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Wang Jing
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Sun Fenyong
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| | - Ma Ji
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ramesh Bhandari
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University of Medicine Shanghai, China
| |
Collapse
|
11
|
Dehghani H. Regulation of Chromatin Organization in Cell Stemness: The Emerging Role of Long Non-coding RNAs. Stem Cell Rev Rep 2021; 17:2042-2053. [PMID: 34181184 DOI: 10.1007/s12015-021-10209-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/27/2022]
Abstract
Chromatin is organized as chromosome territories in the nucleus of an interphase cell. The cell-type- and cell-state-specific organization of chromatin including the location, volume, compaction level, and spatial arrangement of chromosome territories are the major determinants of genome function. In addition, in response to different signaling stimuli and regulatory cues, it is the dynamic adaptation of chromatin structure that establishes and organizes transcriptional programs. It is known that varying levels of stemness are defined by gene regulatory networks. Accordingly, chromatin is the main milieu to host the transcriptional programs and gene regulatory networks responsible for the stemness status of a cell. In this review, our current understanding of the spatial organization of chromatin and the ways by which it defines stemness are discussed. In particular, the role of lncRNAs that regulate and affect chromatin organization and stemness properties are delineated. These roles can be categorized into the topics of specific binding to and epigenetic regulation of the promoter of pluripotency genes, their interaction with transcription factors, coordinating the intra- and inter-chromosomal looping of pluripotency-related genes, and their RNA-independent functions. This review brings together the results of studies that have begun to clarify the emerging roles of lncRNAs in the regulation of chromatin organization adapted for stemness and cancer plasticity.
Collapse
Affiliation(s)
- Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
12
|
Aznaourova M, Schmerer N, Schmeck B, Schulte LN. Disease-Causing Mutations and Rearrangements in Long Non-coding RNA Gene Loci. Front Genet 2020; 11:527484. [PMID: 33329688 PMCID: PMC7735109 DOI: 10.3389/fgene.2020.527484] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.
Collapse
Affiliation(s)
- Marina Aznaourova
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Nils Schmerer
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
13
|
Huang G, Ma J, Zhang L. Integrin Subunit Alpha 5 (ITGA5) Gene Circular RNA Sponges microRNA-107 in Colorectal Carcinoma Cells and Tissues and Regulates the Expression of the Forkhead Box J3 (FOXJ3) Gene. Med Sci Monit 2020; 26:e920623. [PMID: 32305992 PMCID: PMC7191964 DOI: 10.12659/msm.920623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Circular RNAs (circRNAs) can function as sponges for microRNA (miRNA) in carcinogenesis. This study aimed to investigate the role of the circRNA of the integrin subunit alpha 5 (ITGA5) gene and microRNA-107 (miR-107) in human colorectal carcinoma (CRC) cells in vitro and tissue samples from patients with CRC and the expression of forkhead box J3 (FOXJ3) protein. Material/Methods Thirty paired CRC tissue samples and adjacent normal colon tissue samples were studied. Human CRC cell lines, including HT29, SW480, LoVo, and HIEC cells, were studied for cell proliferation using the cell counting kit-8 (CCK-8) assay. Cell migration was studied using a transwell assay, and cell apoptosis was determined using flow cytometry. The luciferase reporter assay was used to study the interactions between ITGA5 circRNA, FOXJ3, and miR-107 in human CRC cells. The expression of ITGA5 circRNA and miR-107 was determined using quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of FOXJ3 were measured by Western blot. Results The expression of ITGA5 circRNA was significantly reduced in CRC tissues and CRC cell lines. High ITGA5 circRNA expression inhibited the proliferation and cell migration of CRC cells and promoted the apoptosis of CRC cells. The luciferase reporter assay confirmed that ITGA5 circRNA bound to miR-107, which directly targeted FOXJ3. Conclusions ITGA5 circRNA may act as a sponge for miR-107 to upregulate FOXJ3 expression and act as a tumor suppressor in CRC cells.
Collapse
Affiliation(s)
- Guoqiang Huang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| | - Jun Ma
- Department of General Surgery, Zhejiang Provincial Peoples' Hospital, Peoples' Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Lei Zhang
- Department of Anorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
14
|
Isoda T, Morio T, Takagi M. Noncoding RNA transcription at enhancers and genome folding in cancer. Cancer Sci 2019; 110:2328-2336. [PMID: 31228211 PMCID: PMC6676135 DOI: 10.1111/cas.14107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Changes of nuclear localization of lineage-specific genes from a transcriptionally inert to permissive environment are a crucial step in establishing the identity of a cell. Noncoding RNA transcription-mediated genome folding and activation of target gene expression have been found in a variety of cell types. Noncoding RNA ThymoD (thymocyte differentiation factor) transcription at superenhancers is essential for mouse T-cell lineage commitment. The cessation of ThymoD transcription abolishes transcription-mediated demethylation, recruiting looping factors such as the cohesin complex, CCCTC-binding factor (CTCF), ultimately leading to the phenotype of severe combined immunodeficiency and T-cell leukemia/lymphoma. In this review, we describe the functional role of RNA polymerase II-mediated transcription at enhancers and in genome folding. We also highlight the involvement of faulty activation or suppression of enhancer transcription and enhancer-promoter interaction in cancer development.
Collapse
Affiliation(s)
- Takeshi Isoda
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|