1
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Mehrotra M, Phadte P, Shenoy P, Chakraborty S, Gupta S, Ray P. Drug-Resistant Epithelial Ovarian Cancer: Current and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:65-96. [PMID: 38805125 DOI: 10.1007/978-3-031-58311-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Epithelial ovarian cancer (EOC) is a complex disease with diverse histological subtypes, which, based on the aggressiveness and course of disease progression, have recently been broadly grouped into type I (low-grade serous, endometrioid, clear cell, and mucinous) and type II (high-grade serous, high-grade endometrioid, and undifferentiated carcinomas) categories. Despite substantial differences in pathogenesis, genetics, prognosis, and treatment response, clinical diagnosis and management of EOC remain similar across the subtypes. Debulking surgery combined with platinum-taxol-based chemotherapy serves as the initial treatment for High Grade Serous Ovarian Carcinoma (HGSOC), the most prevalent one, and for other subtypes, but most patients exhibit intrinsic or acquired resistance and recur in short duration. Targeted therapies, such as anti-angiogenics (e.g., bevacizumab) and PARP inhibitors (for BRCA-mutated cancers), offer some success, but therapy resistance, through various mechanisms, poses a significant challenge. This comprehensive chapter delves into emerging strategies to address these challenges, highlighting factors like aberrant miRNAs, metabolism, apoptosis evasion, cancer stem cells, and autophagy, which play pivotal roles in mediating resistance and disease relapse in EOC. Beyond standard treatments, the focus of this study extends to alternate targeted agents, including immunotherapies like checkpoint inhibitors, CAR T cells, and vaccines, as well as inhibitors targeting key oncogenic pathways in EOC. Additionally, this chapter covers disease classification, diagnosis, resistance pathways, standard treatments, and clinical data on various emerging approaches, and advocates for a nuanced and personalized approach tailored to individual subtypes and resistance mechanisms, aiming to enhance therapeutic outcomes across the spectrum of EOC subtypes.
Collapse
Affiliation(s)
- Megha Mehrotra
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Pratham Phadte
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Priti Shenoy
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sourav Chakraborty
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudeep Gupta
- Homi Bhabha National Institute, Mumbai, India
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signalling & Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer-Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
3
|
Fan G, Qin J, Fu X, Si X, Li L, Yang K, Wang B, Lou H, Zhu J. Low-Intensity Focused Ultrasound Targeted Microbubble Destruction Enhanced Paclitaxel Sensitivity by Decreasing Autophagy in Paclitaxel-Resistant Ovarian Cancer. Front Oncol 2022; 12:823956. [PMID: 35574313 PMCID: PMC9098947 DOI: 10.3389/fonc.2022.823956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Ultrasound targeted microbubble destruction (UTMD) was introduced as a promising method to improve anti-tumor therapeutic efficacy, while minimizing side effects to healthy tissues. Nevertheless, the acoustical phenomenon behind the UTMD as well as the exact mechanisms of autophagy action involved in the increased anti-cancer response are still not fully understood. Therefore, we examined the drug resistance-reversing effects of low-intensity focused ultrasound with microbubble (LIFU+MB) in paclitaxel (PTX)-resistant ovarian cancer cells. Cell viability was evaluated using CCK8 (Cell Counting Kit-8), apoptosis was detected by flow cytometry, quantitative real-time PCR and Western blot were used to detect the expressions of mRNA and protein, and autophagy was observed by transmission electron microscopy (TEM). We revealed that the level of autophagy was increased (p < 0.05) in PTX-resistant ovarian cancer cells. Treatment of LIFU+MB combined with PTX can notably inhibit proliferation as well as increase apoptosis (p < 0.01) in drug-resistant cells. We proposed that LIFU+MB might affect the sensitivity of ovarian cancer cells to PTX by modulating autophagy. To verify the hypothesis, we analyzed the autophagy level of drug-resistant cells after the treatment of LIFU+MB and found that autophagy was significantly inhibited. Altogether, our findings demonstrated that LIFU+MB could reverse PTX resistance in ovarian cancer via inhibiting autophagy, which provides a novel strategy to improve chemosensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Gonglin Fan
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Fu
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Si
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqiang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Keji Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- Center of Cryo-Electron Microscope (CCEM), Zhejiang University, Hangzhou, China
| | - Haiya Lou
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhu
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiang Zhu,
| |
Collapse
|
4
|
Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of Multi-omics Approaches for Exploring the Molecular Mechanism of Ovarian Carcinogenesis. Front Oncol 2021; 11:745808. [PMID: 34631583 PMCID: PMC8497990 DOI: 10.3389/fonc.2021.745808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | - Zhi-wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Chen X, Lan H, He D, Wang Z, Xu R, Yuan J, Xiao M, Zhang Y, Gong L, Xiao S, Cao K. Analysis of Autophagy-Related Signatures Identified Two Distinct Subtypes for Evaluating the Tumor Immune Microenvironment and Predicting Prognosis in Ovarian Cancer. Front Oncol 2021; 11:616133. [PMID: 34041016 PMCID: PMC8141647 DOI: 10.3389/fonc.2021.616133] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecologic malignant tumors. The interaction between autophagy and the tumor immune microenvironment has clinical importance. Hence, it is necessary to explore reliable biomarkers associated with autophagy-related genes (ARGs) for risk stratification in OC. Here, we obtained ARGs from the MSigDB database and downloaded the expression profile of OC from TCGA database. The k-means unsupervised clustering method was used for clustering, and two subclasses of OC (cluster A and cluster B) were identified. SsGSEA method was used to quantify the levels of infiltration of 24 subtypes of immune cells. Metascape and GSEA were performed to reveal the differential gene enrichment in signaling pathways and cellular processes of the subtypes. We found that patients in cluster A were significantly associated with higher immune infiltration and immune-associated signaling pathways. Then, we established a risk model by LASSO Cox regression. ROC analysis and Kaplan-Meier analysis were applied for evaluating the efficiency of the risk signature, patients with low-risk got better outcomes than those with high-risk in overall survival. Finally, ULK2 and GABARAPL1 expression was further validated in clinical samples. In conclusion, Our study constructed an autophagy-related prognostic indicator, and identified two promising targets in OC.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hua Lan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- The Second People's Hospital of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Runshi Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Yokota Y, Noda T, Okumura Y, Kobayashi S, Iwagami Y, Yamada D, Tomimaru Y, Akita H, Gotoh K, Takeda Y, Tanemura M, Murakami T, Umeshita K, Doki Y, Eguchi H. Serum exosomal miR-638 is a prognostic marker of HCC via downregulation of VE-cadherin and ZO-1 of endothelial cells. Cancer Sci 2021; 112:1275-1288. [PMID: 33426736 PMCID: PMC7935782 DOI: 10.1111/cas.14807] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer‐related death. High recurrence rates after curative resection and the lack of specific biomarkers for intrahepatic metastases are major clinical problems. Recently, exosomal microRNAs (miRNAs) have been reported to have a role in the formation of the pre‐metastatic niche and as promising biomarkers in patients with malignancy. Here we aimed to clarify the molecular mechanisms of intrahepatic metastasis and to identify a novel biomarker miRNA in patients with HCC. A highly intrahepatic metastatic cell line (HuH‐7M) was established by in vivo selection. HuH‐7M showed increased proliferative ability and suppression of apoptosis and anoikis. HuH‐7M and the parental cell (HuH‐7P) showed the similar expression of epithelial‐mesenchymal transition markers and cancer stem cell markers. In vivo, mice treated with exosomes derived from HuH‐7M showed increased tumorigenesis of liver metastases. Exosomes from HuH‐7M downregulated endothelial cell expression of vascular endothelial‐cadherin (VE‐cadherin) and zonula occludens‐1 (ZO‐1) in non‐cancerous regions of liver and increased the permeability of FITC‐dextran through the monolayer of endothelial cells. The miRNAs (miR‐638, miR‐663a, miR‐3648, and miR‐4258) could attenuate endothelial junction integrity by inhibiting VE‐cadherin and ZO‐1 expression. In patients with HCC, higher serum exosomal miR‐638 expression was associated with tumor recurrence. In conclusion, the miRNAs secreted from a highly metastatic cancer cell can promote vascular permeability via downregulation of endothelial expression of VE‐cadherin and ZO‐1. Serum exosomal miR‐638 expression holds potential for serving as a significant and independent prognostic marker in HCC.
Collapse
Affiliation(s)
- Yuki Yokota
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Okumura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yutaka Takeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Surgery, Kansai Rosai Hospital, Amagasaki, Japan
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Surgery, Rinku General Medical Center, Izumisano, Japan
| | - Takashi Murakami
- Department of Microbiology, Saitama Medical University, Iruma, Japan
| | - Koji Umeshita
- Division of Health Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Ferraresi A, Girone C, Esposito A, Vidoni C, Vallino L, Secomandi E, Dhanasekaran DN, Isidoro C. How Autophagy Shapes the Tumor Microenvironment in Ovarian Cancer. Front Oncol 2020; 10:599915. [PMID: 33364196 PMCID: PMC7753622 DOI: 10.3389/fonc.2020.599915] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is characterized by a high mortality rate due to the late diagnosis and the elevated metastatic potential. Autophagy, a lysosomal-driven catabolic process, contributes to the macromolecular turnover, cell homeostasis, and survival, and as such, it represents a pathway targetable for anti-cancer therapies. It is now recognized that the vascularization and the cellular composition of the tumor microenvironment influence the development and progression of OC by controlling the availability of nutrients, oxygen, growth factors, and inflammatory and immune-regulatory soluble factors that ultimately impinge on autophagy regulation in cancer cells. An increasing body of evidence indicates that OC carcinogenesis is associated, at least in the early stages, to insufficient autophagy. On the other hand, when the tumor is already established, autophagy activation provides a survival advantage to the cancer cells that face metabolic stress and protects from the macromolecules and organelles damages induced by chemo- and radiotherapy. Additionally, upregulation of autophagy may lead cancer cells to a non-proliferative dormant state that protects the cells from toxic injuries while preserving their stem-like properties. Further to complicate the picture, autophagy is deregulated also in stromal cells. Thus, changes in the tumor microenvironment reflect on the metabolic crosstalk between cancer and stromal cells impacting on their autophagy levels and, consequently, on cancer progression. Here, we present a brief overview of the role of autophagy in OC hallmarks, including tumor dormancy, chemoresistance, metastasis, and cell metabolism, with an emphasis on the bidirectional metabolic crosstalk between cancer cells and stromal cells in shaping the OC microenvironment.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Girone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
8
|
Duan S, Li J, Tian J, Yin H, Zhai Q, Wu Y, Yao S, Zhang L. Crosstalk between let-7a-5p and BCL-xL in the Initiation of Toxic Autophagy in Lung Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:69-78. [PMID: 31650027 PMCID: PMC6804504 DOI: 10.1016/j.omto.2019.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/31/2019] [Indexed: 02/09/2023]
Abstract
Autophagy is essential for cellular metabolism and plays pivotal roles in carcinogenesis, while excessive autophagy induces toxicity and cell death. Our previous studies have suggested that let-7a-5p/BCL-xL might regulate autophagy in lung cancer, but the regulatory mechanism is unclear. The central goal of the study was to figure out the role of let-7a-5p/BCL-xL in the initiation of autophagy and its effect on the migration, invasion, and proliferation of A549 cells as well as its therapeutic potential in lung cancer. Based on the genome-wide expression profiles of lung cancer, BCL-xL and let-7a-5p were found to be dysregulated and negatively correlated in lung adenocarcinoma, which was associated with the survival of lung cancer. The crosstalk between BCL-xL and let-7a-5p was then investigated using dual-luciferase reporter assay, and it was found to suppress the migration and invasion of A549 cells. Further, we found that the crosstalk between BCL-xL and let-7a-5p could lead to toxic autophagy and cell death through activating the PI3K-signaling pathway, which was independent of apoptosis or pyroptosis. These findings indicate that let-7a-5p is a sensitive initiator for toxic autophagy in A549 lung cancer cells and is an appealing target for lung cancer therapy.
Collapse
Affiliation(s)
- Shuyin Duan
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Junxia Li
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Jiaqi Tian
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Haoyu Yin
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Qingfeng Zhai
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China
| | - Yongjun Wu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Maternal and Child Health Care Hospital, Jinan 250001, China
| |
Collapse
|
9
|
Kuo CL, Jiang ZY, Wang YW, Lin TY, Huang WL, Wu FJ, Luo CW. In vivo selection reveals autophagy promotes adaptation of metastatic ovarian cancer cells to abdominal microenvironment. Cancer Sci 2019; 110:3204-3214. [PMID: 31385416 PMCID: PMC6778661 DOI: 10.1111/cas.14162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic route of ovarian cancer. However, due to the high heterogeneity in ovarian cancer, most conventional studies lack parental tumor controls relevant to metastases and, thus, it is difficult to trace the molecular changes of cancer cells along with the selection by the abdominal microenvironment. Here, we established an in vivo mouse peritoneal dissemination scheme that allowed us to select more aggressive sublines from parental ovarian cancer cells, including A2780 and SKOV-3. Microarray and gene profiling analyses indicated that autophagy-related genes were enriched in selected malignant sublines. Detection of LC3-II, p62 and autophagic puncta demonstrated that these malignant variants were more sensitive to autophagic induction when exposed to diverse stress conditions, such as high cell density, starvation and drug treatment. As compared with parental A2780, the selected variant acquired the ability to grow better under high-density stress; however, this effect was reversed by addition of autophagic inhibitors or knockdown of ATG5. When analyzing the clinical profiles of autophagy-related genes identified to be enriched in malignant A2780 variant, 73% of them had prognostic significance for the survival of ovarian cancer patients. Taken together, our findings indicate that an increase in autophagic potency among ovarian cancer cells is crucial for selection of metastatic colonies in the abdominal microenvironment. In addition, the derived autophagic gene profile can not only predict prognosis well but can also be potentially applied to precision medicine for identifying those ovarian cancer patients suitable for taking anti-autophagy cancer drugs.
Collapse
Affiliation(s)
- Chih-Lin Kuo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Zhe-Yu Jiang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Wen Wang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ting-Yu Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Lin Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Wu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wei Luo
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|