1
|
Castellani S, Iaconisi GN, Tripaldi F, Porcelli V, Trapani A, Messina E, Guerra L, Di Franco C, Maruccio G, Monteduro AG, Corbo F, Di Gioia S, Trapani G, Conese M. Dopamine and Citicoline-Co-Loaded Solid Lipid Nanoparticles as Multifunctional Nanomedicines for Parkinson's Disease Treatment by Intranasal Administration. Pharmaceutics 2024; 16:1048. [PMID: 39204393 PMCID: PMC11360708 DOI: 10.3390/pharmaceutics16081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
This work aimed to evaluate the potential of the nanosystems constituted by dopamine (DA) and the antioxidant Citicoline (CIT) co-loaded in solid lipid nanoparticles (SLNs) for intranasal administration in the treatment of Parkinson disease (PD). Such nanosystems, denoted as DA-CIT-SLNs, were designed according to the concept of multifunctional nanomedicine where multiple biological roles are combined into a single nanocarrier and prepared by the melt emulsification method employing the self-emulsifying Gelucire® 50/13 as lipid matrix. The resulting DA-CIT-SLNs were characterized regarding particle size, surface charge, encapsulation efficiency, morphology, and physical stability. Differential scanning calorimetry, FT-IR, and X ray diffraction studies were carried out to gain information on solid-state features, and in vitro release tests in simulated nasal fluid (SNF) were performed. Monitoring the particle size at two temperatures (4 °C and 37 °C), the size enlargement observed over the time at 37 °C was lower than that observed at 4 °C, even though at higher temperature, color changes occurred, indicative of possible neurotransmitter decomposition. Solid-state studies indicated a reduction in the crystallinity when DA and CIT are co-encapsulated in DA-CIT-SLNs. Interestingly, in vitro release studies in SNF indicated a sustained release of DA. Furthermore, DA-CIT SLNs displayed high cytocompatibility with both human nasal RPMI 2650 and neuronal SH-SY5Y cells. Furthermore, OxyBlot assay demonstrated considerable potential to assess the protective effect of antioxidant agents against oxidative cellular damage. Thus, such protective effect was shown by DA-CIT-SLNs, which constitute a promising formulation for PD application.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Francesca Tripaldi
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Vito Porcelli
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Eugenia Messina
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (V.P.); (E.M.); (L.G.)
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento and INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy (A.G.M.)
- CNR-NANOTEC Institute of Nanotechnology, Via per Monteroni, 73100 Lecce, Italy
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.T.); (F.C.); (G.T.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
2
|
Siddique F, Anwaar A, Bashir M, Nadeem S, Rawat R, Eyupoglu V, Afzal S, Bibi M, Bin Jardan YA, Bourhia M. Revisiting methotrexate and phototrexate Zinc15 library-based derivatives using deep learning in-silico drug design approach. Front Chem 2024; 12:1380266. [PMID: 38576849 PMCID: PMC10991842 DOI: 10.3389/fchem.2024.1380266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Cancer is the second most prevalent cause of mortality in the world, despite the availability of several medications for cancer treatment. Therefore, the cancer research community emphasized on computational techniques to speed up the discovery of novel anticancer drugs. Methods: In the current study, QSAR-based virtual screening was performed on the Zinc15 compound library (271 derivatives of methotrexate (MTX) and phototrexate (PTX)) to predict their inhibitory activity against dihydrofolate reductase (DHFR), a potential anticancer drug target. The deep learning-based ADMET parameters were employed to generate a 2D QSAR model using the multiple linear regression (MPL) methods with Leave-one-out cross-validated (LOO-CV) Q2 and correlation coefficient R2 values as high as 0.77 and 0.81, respectively. Results: From the QSAR model and virtual screening analysis, the top hits (09, 27, 41, 68, 74, 85, 99, 180) exhibited pIC50 ranging from 5.85 to 7.20 with a minimum binding score of -11.6 to -11.0 kcal/mol and were subjected to further investigation. The ADMET attributes using the message-passing neural network (MPNN) model demonstrated the potential of selected hits as an oral medication based on lipophilic profile Log P (0.19-2.69) and bioavailability (76.30% to 78.46%). The clinical toxicity score was 31.24% to 35.30%, with the least toxicity score (8.30%) observed with compound 180. The DFT calculations were carried out to determine the stability, physicochemical parameters and chemical reactivity of selected compounds. The docking results were further validated by 100 ns molecular dynamic simulation analysis. Conclusion: The promising lead compounds found endorsed compared to standard reference drugs MTX and PTX that are best for anticancer activity and can lead to novel therapies after experimental validations. Furthermore, it is suggested to unveil the inhibitory potential of identified hits via in-vitro and in-vivo approaches.
Collapse
Affiliation(s)
- Farhan Siddique
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmar Anwaar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Maryam Bashir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Southern Punjab Institute of Health Sciences, Multan, Pakistan
| | - Sumaira Nadeem
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, India
| | - Volkan Eyupoglu
- Department of Chemistry, Cankırı Karatekin University, Cankırı, Türkiye
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mehvish Bibi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
3
|
Guan J, Li M, Wang Y, Zhang Y, Que Y, Lu S, Wang J, Zhu J, Huang J, Zhen Z, Sun F, Song M, Zhang Y. MTHFD1 regulates the NADPH redox homeostasis in MYCN-amplified neuroblastoma. Cell Death Dis 2024; 15:124. [PMID: 38336749 PMCID: PMC10858228 DOI: 10.1038/s41419-024-06490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
MYCN amplification is an independent poor prognostic factor in patients with high-risk neuroblastoma (NB). Further exploring the molecular regulatory mechanisms in MYCN-amplified NB will help to develop novel therapy targets. In this study, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) was identified as the differentially expressed gene (DEG) highly expressed in MYCN-amplified NB, and it showed a positive correlation with MYCN and was associated with a poor prognosis of NB patients. Knockdown of MTHFD1 inhibited proliferation and migration, and induced apoptosis of NB cells in vitro. Mouse model experiments validated the tumorigenic effect of MTHFD1 in NB in vivo. In terms of the mechanism, ChIP-qPCR and dual-luciferase reporter assays demonstrated that MTHFD1 was directly activated by MYCN at the transcriptional level. As an important enzyme in the folic acid metabolism pathway, MTHFD1 maintained the NADPH redox homeostasis in MYCN-amplified NB. Knockdown of MTHFD1 reduced cellular NADPH/NADP+ and GSH/GSSG ratios, increased cellular reactive oxygen species (ROS) and triggered the apoptosis of NB cells. Moreover, genetic knockdown of MTHFD1 or application of the anti-folic acid metabolism drug methotrexate (MTX) potentiated the anti-tumor effect of JQ1 both in vitro and in vivo. Taken together, MTHFD1 as an oncogene is a potential therapeutic target for MYCN-amplified NB. The combination of MTX with JQ1 is of important clinical translational significance for the treatment of patients with MYCN-amplified NB.
Collapse
Affiliation(s)
- Jinqiu Guan
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Mengjia Song
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
4
|
De Giglio E, Bakowsky U, Engelhardt K, Caponio A, La Pietra M, Cometa S, Castellani S, Guerra L, Fracchiolla G, Poeta ML, Mallamaci R, Cardone RA, Bellucci S, Trapani A. Solid Lipid Nanoparticles Containing Dopamine and Grape Seed Extract: Freeze-Drying with Cryoprotection as a Formulation Strategy to Achieve Nasal Powders. Molecules 2023; 28:7706. [PMID: 38067437 PMCID: PMC10707881 DOI: 10.3390/molecules28237706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
(1) Background: DA-Gelucire® 50/13-based solid lipid nanoparticles (SLNs) administering the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) have been prepared by us in view of a possible application for Parkinson's disease (PD) treatment. To develop powders constituted by such SLNs for nasal administration, herein, two different agents, namely sucrose and methyl-β-cyclodextrin (Me-β-CD), were evaluated as cryoprotectants. (2) Methods: SLNs were prepared following the melt homogenization method, and their physicochemical features were investigated by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). (3) Results: SLN size and zeta potential values changed according to the type of cryoprotectant and the morphological features investigated by SEM showed that the SLN samples after lyophilization appear as folded sheets with rough surfaces. On the other hand, the AFM visualization of the SLNs showed that their morphology consists of round-shaped particles before and after freeze-drying. XPS showed that when sucrose or Me-β-CD were not detected on the surface (because they were not allocated on the surface or completely absent in the formulation), then a DA surfacing was observed. In vitro release studies in Simulated Nasal Fluid evidenced that DA release, but not the GSE one, occurred from all the cryoprotected formulations. Finally, sucrose increased the physical stability of SLNs better than Me-β-CD, whereas RPMI 2650 cell viability was unaffected by SLN-sucrose and slightly reduced by SLN-Me-β-CD. (4) Conclusions: Sucrose can be considered a promising excipient, eliciting cryoprotection of the investigated SLNs, leading to a powder nasal pharmaceutical dosage form suitable to be handled by PD patients.
Collapse
Affiliation(s)
- Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (U.B.); (K.E.)
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Matteo La Pietra
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| | - Maria Luana Poeta
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.G.); (M.L.P.); (R.M.); (R.A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; (A.C.); (G.F.)
| |
Collapse
|
5
|
Alfar R, Napoleon JV, Shahriar I, Finnell R, Walchle C, Johnson A, Low PS. Selective reprogramming of regulatory T cells in solid tumors can strongly enhance or inhibit tumor growth. Front Immunol 2023; 14:1274199. [PMID: 37928524 PMCID: PMC10623129 DOI: 10.3389/fimmu.2023.1274199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Folate receptor delta (FRδ) has been used as a biomarker for regulatory T cells (Tregs), because its expression is limited to Tregs and ovum. Although FRδ is unable to bind folate, we have used molecular docking software to identify a folate congener that binds FRδ with high affinity and have exploited this FRδ-specific ligand to target attached drugs (imaging agents, immune activators, and immune suppressors) specifically to Tregs in murine tumor xenografts. Analysis of treated tumors demonstrates that targeting of a Toll-like receptor 7 agonist inhibits Treg expression of FOXP3, PD-1, CTLA4, and HELIOS, resulting in 40-80% reduction in tumor growth and repolarization of other tumor-infiltrating immune cells to more inflammatory phenotypes. Targeting of the immunosuppressive drug dexamethasone, in contrast, promotes enhanced tumor growth and shifts the tumor-infiltrating immune cells to more anti-inflammatory phenotypes. Since Tregs comprise <1% of cells in the tumor masses examined, and since the targeted drugs are not internalized by cancer cells, these data demonstrate that Tregs exert a disproportionately large effect on tumor growth. Because the targeted drug did not bind to Tregs or other immune cells in healthy tissues, the data demonstrate that the immunosuppressive properties of Tregs in tumors can be manipulated without causing systemic toxicities associated with global reprogramming of the immune system.
Collapse
Affiliation(s)
- Rami Alfar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Imrul Shahriar
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Richard Finnell
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Cole Walchle
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Austin Johnson
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Combined Dopamine and Grape Seed Extract-Loaded Solid Lipid Nanoparticles: Nasal Mucosa Permeation, and Uptake by Olfactory Ensheathing Cells and Neuronal SH-SY5Y Cells. Pharmaceutics 2023; 15:pharmaceutics15030881. [PMID: 36986742 PMCID: PMC10059967 DOI: 10.3390/pharmaceutics15030881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
We have already formulated solid lipid nanoparticles (SLNs) in which the combination of the neurotransmitter dopamine (DA) and the antioxidant grape-seed-derived proanthocyanidins (grape seed extract, GSE) was supposed to be favorable for Parkinson’s disease (PD) treatment. In fact, GSE supply would reduce the PD-related oxidative stress in a synergic effect with DA. Herein, two different methods of DA/GSE loading were studied, namely, coadministration in the aqueous phase of DA and GSE, and the other approach consisting of a physical adsorption of GSE onto preformed DA containing SLNs. Mean diameter of DA coencapsulating GSE SLNs was 187 ± 4 nm vs. 287 ± 15 nm of GSE adsorbing DA-SLNs. TEM microphotographs evidenced low-contrast spheroidal particles, irrespective of the SLN type. Moreover, Franz diffusion cell experiments confirmed the permeation of DA from both SLNs through the porcine nasal mucosa. Furthermore, fluorescent SLNs also underwent cell-uptake studies by using flow cytometry in olfactory ensheathing cells and neuronal SH-SY5Y cells, evidencing higher uptake when GSE was coencapsulated rather than adsorbed onto the particles.
Collapse
|
7
|
Suzuki K, Tange M, Yamagishi R, Hanada H, Mukai S, Sato T, Tanaka T, Akashi T, Kadomatsu K, Maeda T, Miida T, Takeuchi I, Murakami H, Sekido Y, Murakami-Tonami Y. SMG6 regulates DNA damage and cell survival in Hippo pathway kinase LATS2-inactivated malignant mesothelioma. Cell Death Dis 2022; 8:446. [PMID: 36335095 PMCID: PMC9637146 DOI: 10.1038/s41420-022-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Many genes responsible for Malignant mesothelioma (MM) have been identified as tumor suppressor genes and it is difficult to target these genes directly at a molecular level. We searched for the gene which showed synthetic lethal phenotype with LATS2, one of the MM causative genes and one of the kinases in the Hippo pathway. Here we showed that knockdown of SMG6 results in synthetic lethality in LATS2-inactivated cells. We found that this synthetic lethality required the nuclear translocation of YAP1 and TAZ. Both are downstream factors of the Hippo pathway. We also demonstrated that this synthetic lethality did not require SMG6 in nonsense-mediated mRNA decay (NMD) but in regulating telomerase reverse transcriptase (TERT) activity. In addition, the RNA-dependent DNA polymerase (RdDP) activity of TERT was required for this synthetic lethal phenotype. We confirmed the inhibitory effects of LATS2 and SMG6 on cell proliferation in vivo. The result suggests an interaction between the Hippo and TERT signaling pathways. We also propose that SMG6 and TERT are novel molecular target candidates for LATS2-inactivated cancers such as MM.
Collapse
Affiliation(s)
- Koya Suzuki
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Masaki Tange
- grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan
| | - Ryota Yamagishi
- grid.258799.80000 0004 0372 2033Department of Pathophysiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Hanada
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Satomi Mukai
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tatsuhiro Sato
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Tomohiro Akashi
- grid.27476.300000 0001 0943 978XDepartment of Integrative Cellular Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- grid.27476.300000 0001 0943 978XDepartment of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInstitute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tohru Maeda
- grid.411042.20000 0004 0371 5415College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takashi Miida
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ,grid.27476.300000 0001 0943 978XGraduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- grid.443595.a0000 0001 2323 0843Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yoshitaka Sekido
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDivision of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Murakami-Tonami
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
8
|
Yamashita K, Kiyonari S, Tsubota S, Kishida S, Sakai R, Kadomatsu K. Thymidylate synthase inhibitor raltitrexed can induce high levels of DNA damage in MYCN-amplified neuroblastoma cells. Cancer Sci 2020; 111:2431-2439. [PMID: 32415892 PMCID: PMC7385364 DOI: 10.1111/cas.14485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
MYCN gene amplification is consistently associated with poor prognosis in patients with neuroblastoma, a pediatric tumor arising from the sympathetic nervous system. Conventional anticancer drugs, such as alkylating agents and platinum compounds, have been used for the treatment of high-risk patients with MYCN-amplified neuroblastoma, whereas molecule-targeting drugs have not yet been approved. Therefore, the development of a safe and effective therapeutic approach is highly desired. Although thymidylate synthase inhibitors are widely used for colorectal and gastric cancers, their usefulness in neuroblastoma has not been well studied. Here, we investigated the efficacies of approved antifolates, methotrexate, pemetrexed, and raltitrexed (RTX), on MYCN-amplified and nonamplified neuroblastoma cell lines. Cell growth-inhibitory assay revealed that RTX showed a superior inhibitory activity against MYCN-amplified cell lines. We found no significant differences in the protein expression levels of the antifolate transporter or thymidylate synthase, a primary target of RTX, among the cell lines. Because thymidine supplementation could rescue the RTX-induced cell growth suppression, the effect of RTX was mainly due to the reduction in dTTP synthesis. Interestingly, RTX treatments induced single-stranded DNA damage response in MYCN-amplified cells to a greater extent than in the nonamplified cells. We propose that the high DNA replication stress and elevated levels of DNA damage, which are a result of deregulated expression of MYCN target genes, could be the cause of increased sensitivity to RTX.
Collapse
Affiliation(s)
- Ken Yamashita
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Kiyonari
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shoma Tsubota
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Kishida
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Sakai
- Division of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|