1
|
Langhans B, Strassburg CP, Röcken C, Kalthoff S. A Common UDP-Glucuronosyltransferase ( UGT) 1A Haplotype Is Associated With Accelerated Aging in Humanized Transgenic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:3203439. [PMID: 40182762 PMCID: PMC11968170 DOI: 10.1155/omcl/3203439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Background: Aging is characterized by the progressive decline of physiological functions and is associated with an increasing risk for developing multiple age-related diseases. UDP-glucuronosyltransferase (UGT)1A enzymes detoxify a variety of endo- and xenobiotic reactive metabolites, thereby acting as indirect antioxidants. A common genetic UGT1A haplotype was shown to affect redox balance in humanized transgenic (htg) UGT1A mice. Since oxidative stress is a main activator of cellular senescence, we aimed to investigate the role of genetic UGT1A variants in the process of aging. Methods: HtgUGT1A-WT and htgUGT1A-SNP mice were harvested at the age of either 12 weeks (young) or 18 months (aged). The effect of aging was examined by analyzing UGT1A expression and activity, expression of senescence markers, and senescence-associated secretory phenotype (SASP) factors, as well as blood counts, serum parameter, and histological staining. Results: In comparison to aged htgUGT1A-WT mice, hepatic UGT1A mRNA and protein expression as well as UGT activity were significantly reduced in aged htgUGT1A-SNP mice. Moreover, elderly htgUGT1A-SNP mice exhibited increased levels of oxidative stress, senescence markers, SASP factors, and peripheral leukocyte counts compared to the respective htgUGT1A-WT mice. Consistent with these findings, we observed higher amounts of collagen and amyloid fibrils as well as an elevated senescence-associated β-galactosidase (SA-β-gal) activity in histological sections of the liver obtained from aged htgUGT1A-SNP mice. Conclusion: Our data suggest an accelerated aging process caused by a common UGT1A haplotype. Moreover, elderly individuals carrying the UGT1A haplotype might exhibit an altered metabolism of drugs, which could necessitate dose adjustments.
Collapse
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University Hospital Bonn 53127, Bonn, Germany
| | | | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein 24105, Kiel, Germany
| | - Sandra Kalthoff
- Department of Internal Medicine I, University Hospital Bonn 53127, Bonn, Germany
| |
Collapse
|
2
|
Liu Y, Cao Y, Li H, Liu H, Chen T, Lin Q, Gong C, Yu F, Cai H, Jin L, Peng R. Mitochondrial homeostatic imbalance-mediated developmental toxicity to H 2S in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125588. [PMID: 39725203 DOI: 10.1016/j.envpol.2024.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Hydrogen sulfide (H2S) is a pervasive environmental and industrial pollutant that poses a substantial threat to human health. Even short-term exposure to H2S can result in severe respiratory and neurological damage. However, the underlying mechanisms of its biotoxicity remain unclear. Our study demonstrated that continuous exposure to 30 μM (1.02 ppm), whin environmentally H2S concentration range, results in notable developmental toxicity, including high mortality rates, morphological deformities, and behavioral abnormalities, in zebrafish larvae. Through transcriptomic analysis, examination of mitochondrial structure and function, and tissue and cellular staining, we found that H2S exposure disrupted mitochondrial dynamics, autophagy, and biogenesis, leading to an imbalance in mitochondrial homeostasis. This disruption induced oxidative stress and extensive apoptosis. Nitric oxide (NO) is a multifunctional signaling molecule known to target and regulate mitochondrial regeneration. In our study, we discovered that sodium nitroprusside (SNP), an NO donor, can activate the NO-sGC-cGMP signaling pathway. This activation improves the homeostatic regulation of mitochondrial dynamics, autophagy, and biogenesis, thereby enhancing mitochondrial function and effectively mitigating H2S-induced biotoxicity. Our research not only elucidates the biotoxicity mechanisms of H2S exposure but also provides valuable insights into potential therapeutic strategies that alleviate or eliminate its toxic effects.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qizhuan Lin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Fan Yu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Helei Cai
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
The GNAQ T96S Mutation Affects Cell Signaling and Enhances the Oncogenic Properties of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063284. [PMID: 33807071 PMCID: PMC8004934 DOI: 10.3390/ijms22063284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common malignant tumor in the liver, grows and metastasizes rapidly. Despite advances in treatment modalities, the five-year survival rate of HCC remains less than 30%. We sought genetic mutations that may affect the oncogenic properties of HCC, using The Cancer Genome Atlas (TCGA) data analysis. We found that the GNAQ T96S mutation (threonine 96 to serine alteration of the Gαq protein) was present in 12 out of 373 HCC patients (3.2%). To examine the effect of the GNAQ T96S mutation on HCC, we transfected the SK-Hep-1 cell line with the wild-type or the mutant GNAQ T96S expression vector. Transfection with the wild-type GNAQ expression vector enhanced anchorage-independent growth, migration, and the MAPK pathways in the SK-Hep-1 cells compared to control vector transfection. Moreover, cell proliferation, anchorage-independent growth, migration, and the MAPK pathways were further enhanced in the SK-Hep-1 cells transfected with the GNAQ T96S expression vector compared to the wild-type GNAQ-transfected cells. In silico structural analysis shows that the substitution of the GNAQ amino acid threonine 96 with a serine may destabilize the interaction between the regulator of G protein signaling (RGS) protein and GNAQ. This may reduce the inhibitory effect of RGS on GNAQ signaling, enhancing the GNAQ signaling pathway. Single nucleotide polymorphism (SNP) genotyping analysis for Korean HCC patients shows that the GNAQ T96S mutation was found in only one of the 456 patients (0.22%). Our data suggest that the GNAQ T96S hotspot mutation may play an oncogenic role in HCC by potentiating the GNAQ signal transduction pathway.
Collapse
|
4
|
Landerer S, Kalthoff S, Paulusch S, Strassburg CP. UDP-glucuronosyltransferase polymorphisms affect diethylnitrosamine-induced carcinogenesis in humanized transgenic mice. Cancer Sci 2020; 111:4266-4275. [PMID: 32860300 PMCID: PMC7648041 DOI: 10.1111/cas.14635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022] Open
Abstract
UDP‐glucuronosyltransferase (UGT) 1A enzymes detoxify a broad array of exogenous compounds including environmental toxins and carcinogens. Case‐control studies identified genetic variations in UGT1A genes leading to reduced glucuronidation activity, which were associated with hepatocellular carcinoma (HCC) formation and progression. The aim of the study was therefore to examine the direct effect of common UGT1A polymorphisms (SNPs) on HCC development and outcome in a diethylnitrosamine (DEN)‐induced mouse model. Therefore, a single intraperitoneal DEN injection (20 mg/kg) was administered to 15‐day‐old htgUGT1A‐WT and htgUGT1A‐SNP mice (containing a human haplotype of 10 common UGT1A SNPs) either receiving water or coffee cotreatment for the following 39 weeks. After this time, tumor incidence, size (>1 mm), histology, liver‐body ratio, serum aminotransferase activities, and UGT1A regulation and activity levels were determined. In DEN‐treated htgUGT1A‐SNP mice, a markedly higher number of tumors with a bigger cumulative diameter were detected. The relative liver weight and aminotransferase activity levels were also significantly higher in mice carrying UGT1A SNPs. After coffee + DEN cotreatment, susceptibility for tumor development and growth considerably decreased in both mouse lines, but was still higher in htgUGT1A‐SNP mice. In conclusion, our study provides experimental evidence for the protective role of UGT1A enzymes in neoplastic transformation. These data confirm case‐control studies implicating impaired UGT1A‐mediated carcinogen detoxification as a risk factor for individual cancer disposition. Coffee treatment, which is able to activate UGT1A expression and activity, reduced HCC development and provides an explanation for the protective properties of coffee on liver diseases including liver cancer.
Collapse
Affiliation(s)
- Steffen Landerer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Sandra Kalthoff
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Stefan Paulusch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|