1
|
Shirane S, Inano T, Fukuda Y, Ochiai T, Midorigawa N, Morishita S, Ando M, Komatsu N. Ropeginterferon-α2b discontinuation after long-term exposure: four cases from a single institution. Int J Hematol 2025:10.1007/s12185-025-04008-x. [PMID: 40399690 DOI: 10.1007/s12185-025-04008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
Polycythemia vera (PV) is a Philadelphia chromosome-negative myeloproliferative neoplasm driven by JAK2 mutations, leading to the overproduction of blood cells. Ropeginterferon-α-2b (RopegIFN) has emerged as a promising therapy, capable of lowering the JAK2V617F allele burden and maintaining a complete hematologic response (CHR). Here, we report the cases of four patients with PV who discontinued RopegIFN after achieving CHR. One patient had sustained long-term remission post-discontinuation, with the JAK2V617F allele burden reduced below 10%, and met the criteria for an "operational cure." However, the other three patients experienced rising blood counts, resulting in loss of CHR. These findings underscore the importance of a robust molecular response in predicting sustainable remission. Continuous therapy remains the standard approach due to the lack of predictive models to identify patients who can safely discontinue RopegIFN. In the future, it will be necessary to verify whether patients who have achieved an "operational cure" can remain treatment free.
Collapse
Affiliation(s)
- Shuichi Shirane
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Tadaaki Inano
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasutaka Fukuda
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomonori Ochiai
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoko Midorigawa
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Soji Morishita
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Hematology, Juntendo University School of Medicine, Tokyo, Japan
- PharmaEssentia Japan KK, Tokyo, Japan
| |
Collapse
|
2
|
Okuda M, Araki M, De Marchi F, Morishita S, Imai M, Fukada H, Ando M, Komatsu N. Involvement of CREB3L1 in erythropoiesis induced by JAK2 exon 12 mutation. Exp Hematol 2024; 139:104636. [PMID: 39237052 DOI: 10.1016/j.exphem.2024.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
CREB3L1, a gene encoding the endoplasmic reticulum stress transducer, is specifically overexpressed in platelet RNA from patients with myeloproliferative neoplasms (MPNs). However, the pathophysiological roles of CREB3L1 overexpression remain unclear. In the present study, we aimed to study CREB3L1 messenger RNA (mRNA) expression in the red blood cells (RBCs) of patients with MPN and its role in erythrocytosis. Elevated expression of CREB3L1 was exclusively observed in the RBCs of patients with polycythemia vera (PV) harboring JAK2 exon 12 mutations, but not in those harboring JAK2 V617F mutation or control subjects. In erythropoiesis, CREB3L1 expression was sharply induced in erythroblasts of bone marrow cells collected from patients with JAK2 exon 12 mutation. This was also evident when erythropoiesis was induced in vitro using hematopoietic stem and progenitor cells (HSPCs) with JAK2 exon 12 mutation. Interestingly, overexpression of CREB3L1 in RBCs was observed in patients with reactive erythrocytosis whose serum erythropoietin (EPO) levels exceeded 100 mIU/mL. Elevated CREB3L1 expression was also observed in the erythroblasts of a patient with acute erythroid leukemia. EPO-dependent induction of CREB3L1 was evident in erythroblasts differentiated from HSPCs in vitro, regardless of driver mutation status or MPN pathogenesis. These data strongly suggest that CREB3L1 overexpression in RBCs is associated with hyperactivation of the EPO receptor and its downstream molecule, JAK2. Short hairpin RNA (shRNA) knockdown of CREB3L1 expression in HSPCs blocked erythroblast formation in vitro. These results suggest that CREB3L1 is required for erythropoiesis in the presence of JAK2 exon 12 mutation or high level of EPO, possibly by antagonizing cellular stress.
Collapse
Affiliation(s)
- Maho Okuda
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Marito Araki
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Federico De Marchi
- Department of Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Soji Morishita
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Misa Imai
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Hanaka Fukada
- Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Norio Komatsu
- Laboratory for the Development of Therapies against MPN, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Advanced Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; Department of Hematology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan; PharmaEssentia Japan KK, Minato-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Cong S, Fu Y, Zhao X, Guo Q, Liang T, Wu D, Wang J, Zhang G. KIF26B and CREB3L1 Derived from Immunoscore Could Inhibit the Progression of Ovarian Cancer. J Immunol Res 2024; 2024:4817924. [PMID: 38380081 PMCID: PMC10878761 DOI: 10.1155/2024/4817924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
Background Ovarian cancer (OV) is characteristic of high incidence rate and fatality rate in the malignant tumors of female reproductive system. Researches on pathogenesis and therapeutic targets for OV need to be continued. This study mainly analyzed the immune-related pathogenesis and discovered the key immunotherapy targets for OV. Methods WGCNA was used for excavating hub gene modules and hub genes related to the immunity of OV. Enrichment analysis was aimed to analyze the related pathways of hub gene modules. Biological experiments were used for exploring the effect of hub genes on SKOV3 cells. Results We identified two hub gene modules related to the immunoscore of OV and found that these genes in the modules were related to the extracellular matrix and viral infections. At the same time, we also discovered six hub genes related to the immunity of OV. Among them, KIF26B and CREB3L1 can affect the proliferation, migration, and invasion of SKOV3 cells by the Wnt/β-catenin pathway. Conclusions The local infection or inflammation of ovarian may affect the immunity of OV. KIF26B and CREB3L1 are expected to be potential targets for the immunotherapy of OV.
Collapse
Affiliation(s)
- Shanshan Cong
- Department of Gynecology, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Yao Fu
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyan Guo
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Liang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Morishita S, Komatsu N. Diagnosis- and Prognosis-Related Gene Alterations in BCR::ABL1-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:13008. [PMID: 37629188 PMCID: PMC10455804 DOI: 10.3390/ijms241613008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are a group of hematopoietic malignancies in which somatic mutations are acquired in hematopoietic stem/progenitor cells, resulting in an abnormal increase in blood cells in peripheral blood and fibrosis in bone marrow. Mutations in JAK2, MPL, and CALR are frequently found in BCR::ABL1-negative MPNs, and detecting typical mutations in these three genes has become essential for the diagnosis of BCR::ABL1-negative MPNs. Furthermore, comprehensive gene mutation and expression analyses performed using massively parallel sequencing have identified gene mutations associated with the prognosis of BCR::ABL1-negative MPNs such as ASXL1, EZH2, IDH1/2, SRSF2, and U2AF1. Furthermore, single-cell analyses have partially elucidated the effect of the order of mutation acquisition on the phenotype of BCR::ABL1-negative MPNs and the mechanism of the pathogenesis of BCR::ABL1-negative MPNs. Recently, specific CREB3L1 overexpression has been identified in megakaryocytes and platelets in BCR::ABL1-negative MPNs, which may be promising for the development of diagnostic applications. In this review, we describe the genetic mutations found in BCR::ABL1-negative MPNs, including the results of analyses conducted by our group.
Collapse
Affiliation(s)
- Soji Morishita
- Development of Therapies against MPNs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkuo-ku, Tokyo 113-8421, Japan
| | - Norio Komatsu
- Development of Therapies against MPNs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkuo-ku, Tokyo 113-8421, Japan
- PharmaEssentia Japan, Akasaka Center Building 12 Fl, 1-3-13 Motoakasaka, Minato-ku, Tokyo 107-0051, Japan
| |
Collapse
|
5
|
Lin Z, Wu Y, Xiao X, Zhang X, Wan J, Zheng T, Chen H, Liu T, Tang X. Pan-cancer analysis of CREB3L1 as biomarker in the prediction of prognosis and immunotherapeutic efficacy. Front Genet 2022; 13:938510. [PMID: 36171879 PMCID: PMC9511413 DOI: 10.3389/fgene.2022.938510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: CAMP response element binding protein 3-like 1 (CREB3L1) has been indicated as a critical biomarker and can modulate multifaced behaviors of tumor cells in diverse cancers. However, a systematic assessment of CREB3L1 in pan-cancer is of absence, and the predictive value of CREB3L1 in cancer prognosis, the tumor immune microenvironment and the efficacy of immunotherapy remains unexplored.Methods: CREB3L1 expression in 33 different cancer types was investigated using RNAseq data from The Cancer Genome Atlas (TCGA) database. The characteristics of CREB3L1 alternations were illustrated in cBioPortal database. The prognostic and clinicopathological value of CREB3L1 was analyzed through clinical data downloaded from the TCGA database. The potential role of CREB3L1 in the tumor immune microenvironment was illustrated by utilizing CIBERSORT and ESTIMATE algorithms, and TISIDB online database. The associations between CREB3L1 expression and tumor mutation burden (TMB), and microsatellite instability (MSI) were assessed by spearman’s rank correlation coefficient. Furthermore, Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential biological functions and downstream pathways of CREB3L1 in different human cancers. The correlations of CREB3L1 expression with PD-1/PD-L1 inhibitors efficacy and drug sensitivity were also investigated.Results: The expression of CREB3L1 was abnormally high or low in several different cancer types, and was also strictly associated with the prognosis of cancer patients. CREB3L1 expression levels have a strong relationship with infiltrating immune cells, including regulatory T cells, CD8+ T cells, macrophages, B naïve cells, dendritic cells and mast cells. CREB3L1 expression was also correlated with the expression of multiple immune-related biomolecules, TMB, and MSI in several cancers. Moreover, CREB3L1 had promising applications in predicting the immunotherapeutic benefits and drug sensitivity in cancer management.Conclusions: Our results highlight the value of CREB3L1 as a predictive biomarker for the prognosis and immunotherapy efficacy in multiple cancers, and CREB3L1 seems to play key roles in the tumor immune microenvironment, suggesting the role of CREB3L1 as a promising biomarker for predicting the prognosis and immune-related signatures in diverse cancers.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanlin Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - XunGang Xiao
- Department of Orthopedics, Chenzhou No. 1 People’s Hospital, Chenzhou, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Tang Liu, ; Xianzhe Tang,
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou No. 1 People’s Hospital, Chenzhou, Hunan, China
- *Correspondence: Tang Liu, ; Xianzhe Tang,
| |
Collapse
|
6
|
Mori Y, Araki M, Morishita S, Imai M, Edahiro Y, Ito M, Ochiai T, Shirane S, Hashimoto Y, Yasuda H, Ando J, Ando M, Komatsu N. Clinical features of acquired erythrocytosis: Low levels of serum erythropoietin in a subset of non-neoplastic erythrocytosis patients. Cancer Med 2022; 12:1079-1089. [PMID: 35775283 PMCID: PMC9883404 DOI: 10.1002/cam4.4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Acquired erythrocytosis can be classified into polycythemia vera (PV) and non-neoplastic erythrocytosis (NNE). The vast majority of PV patients harbor JAK2 mutations, but differentiating JAK2 mutation-negative PV from NNE is challenging due to a lack of definitive molecular markers. METHODS We studied the clinical features of 121 patients with erythrocytosis of which 47 (38.8%) were JAK2 mutation-positive and also fulfilled the diagnostic criteria for PV, and 67 (55.4%) JAK2 mutation-negative erythrocytosis patients who were diagnosed as NNE. Diagnosis was strictly based on driver mutation analysis and central pathology review. RESULTS No JAK2 mutation-negative PV patients were found in our cohort. The NNE group showed significantly younger (p < 0.01) age with higher frequency of smoking (p < 0.001), alcohol consumption (p < 0.001), and diabetes mellitus (p < 0.05), whereas the PV group (n = 47) showed significantly higher white blood cell count, platelet count, and lactate dehydrogenase (p < 0.001). Although serum erythropoietin (EPO) levels were significantly higher in NNE compared to PV (p < 0.001), approximately 40% of the NNE patients had EPO levels below the lower range of normal, fulfilling a minor diagnostic criterion of PV and raising the possibility of PV misdiagnosis. CONCLUSION Low EPO levels in JAK2 mutation-negative erythrocytosis may not be a reliable diagnostic criterion for distinguishing PV from NNE.
Collapse
Affiliation(s)
- Yosuke Mori
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Marito Araki
- Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Soji Morishita
- Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Misa Imai
- Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoko Edahiro
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Masafumi Ito
- Department of PathologyJapanese Red Cross Aichi Medical Center Nagoya Daiichi HospitalNagoyaJapan
| | - Tomonori Ochiai
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Shuichi Shirane
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshinori Hashimoto
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Hajime Yasuda
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Jun Ando
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Department of Cell Therapy and Transfusion MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Miki Ando
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Norio Komatsu
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan,Laboratory for the Development of Therapies Against MPNJuntendo University Graduate School of MedicineTokyoJapan,Department of Advanced HematologyJuntendo University Graduate School of MedicineTokyoJapan,PharmaEssentia Japan KKTokyoJapan
| |
Collapse
|
7
|
De Marchi F, Okuda M, Morishita S, Imai M, Baba T, Horino M, Mori Y, Furuya C, Ogata S, Yang Y, Ando J, Ando M, Araki M, Komatsu N. Clinical and biological relevance of CREB3L1 in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res 2022; 119:106883. [DOI: 10.1016/j.leukres.2022.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
|
8
|
Yan Z, Hu Y, Zhang Y, Pu Q, Chu L, Liu J. Effects of endoplasmic reticulum stress‑mediated CREB3L1 on apoptosis of glioma cells. Mol Clin Oncol 2022; 16:83. [DOI: 10.3892/mco.2022.2516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhao Yan
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yaxin Hu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yiwei Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qian Pu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Liangzhao Chu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jian Liu
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
9
|
Mo C, Xie L, Chen C, Ma J, Huang Y, Wu Y, Xu Y, Peng H, Chen Z, Mao R. The Clinical Significance and Potential Molecular Mechanism of Upregulated CDC28 Protein Kinase Regulatory Subunit 1B in Osteosarcoma. JOURNAL OF ONCOLOGY 2021; 2021:7228584. [PMID: 34925510 PMCID: PMC8683182 DOI: 10.1155/2021/7228584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND CDC28 Protein Kinase Regulatory Subunit 1B (CKS1B) is a member of cyclin-dependent kinase subfamily and the relationship between CKS1B and osteosarcoma (OS) remains to be explored. METHODS 80 OS and 41 nontumor tissue samples were arranged to conduct immunohistochemistry (IHC) to evaluate CKS1B expression between OS and nontumor samples. The standard mean deviation (SMD) was calculated based on in-house IHC and tissue microarrays and exterior high-throughput datasets for further verification of CKS1B expression in OS. The effect of CKS1B expression on clinicopathological and overall survival of OS patients was measured through public high-throughput datasets, and analysis of immune infiltration and single-cell RNA-seq was applied to ascertain molecular mechanism of CKS1B in OS. RESULTS A total of 197 OS samples and 83 nontumor samples (including tissue and cell line) were obtained from in-house IHC, microarrays, and exterior high-throughput datasets. The analysis of integrated expression status demonstrated upregulation of CKS1B in OS (SMD = 1.38, 95% CI [0.52-2.25]) and the significant power of CKS1B expression in distinguishing OS samples from nontumor samples (Area under the Curve (AUC) = 0.89, 95% CI [0.86-0.91]). Clinicopathological and prognosis analysis indicated no remarkable significance but inference of immune infiltration and single-cell RNA-seq prompted that OS patients with overexpressed CKS1B were more likely to suffer OS metastasis while MYC Protooncogene may be the upstream regulon of CKS1B in proliferating osteoblastic OS cells. CONCLUSIONS In this study, sufficient evidence was provided for upregulation of CKS1B in OS. The advanced effect of CKS1B on OS progression indicates a foreground of CKS1B as a biomarker for OS.
Collapse
Affiliation(s)
- Chaohua Mo
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Le Xie
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Chang Chen
- Department of Pathology, Wuzhou Res Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region 543100, China
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yingxin Huang
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yanxing Wu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Yuanyuan Xu
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Huizhi Peng
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Zengwei Chen
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| | - Rongjun Mao
- Department of Pathology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528300, China
| |
Collapse
|
10
|
Morishita S, Yasuda H, Yamawaki S, Kawaji H, Itoh M, Edahiro Y, Imai M, Kogo Y, Tsuneda S, Ohsaka A, Hayashizaki Y, Ito M, Araki M, Komatsu N. CREB3L1 overexpression as a potential diagnostic marker of Philadelphia chromosome-negative myeloproliferative neoplasms. Cancer Sci 2021; 112:884-892. [PMID: 33280191 PMCID: PMC7893984 DOI: 10.1111/cas.14763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Discrimination of Philadelphia-negative myeloproliferative neoplasms (Ph-MPNs) from reactive hypercytosis and myelofibrosis requires a constellation of testing including driver mutation analysis and bone marrow biopsies. We searched for a biomarker that can more easily distinguish Ph-MPNs from reactive hypercytosis and myelofibrosis by using RNA-seq analysis utilizing platelet-rich plasma (PRP)-derived RNAs from patients with essential thrombocythemia (ET) and reactive thrombocytosis, and CREB3L1 was found to have an extremely high impact in discriminating the two disorders. To validate and further explore the result, expression levels of CREB3L1 in PRP were quantified by reverse-transcription quantitative PCR and compared among patients with ET, other Ph-MPNs, chronic myeloid leukemia (CML), and reactive hypercytosis and myelofibrosis. A CREB3L1 expression cutoff value determined based on PRP of 18 healthy volunteers accurately discriminated 150 driver mutation-positive Ph-MPNs from other entities (71 reactive hypercytosis and myelofibrosis, 6 CML, and 18 healthy volunteers) and showed both sensitivity and specificity of 1.0000. Importantly, CREB3L1 expression levels were significantly higher in ET compared with reactive thrombocytosis (P < .0001), and polycythemia vera compared with reactive erythrocytosis (P < .0001). Pathology-affirmed triple-negative ET (TN-ET) patients were divided into a high- and low-CREB3L1-expression group, and some patients in the low-expression group achieved a spontaneous remission during the clinical course. In conclusion, CREB3L1 analysis has the potential to single-handedly discriminate driver mutation-positive Ph-MPNs from reactive hypercytosis and myelofibrosis, and also may identify a subgroup within TN-ET showing distinct clinical features including spontaneous remission.
Collapse
Affiliation(s)
- Soji Morishita
- Department of Transfusion Medicine and Stem Cell RegulationJuntendo University Graduate School of MedicineTokyoJapan
| | - Hajime Yasuda
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Saya Yamawaki
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Hideya Kawaji
- RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
| | - Masayoshi Itoh
- RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
| | - Yoko Edahiro
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Misa Imai
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Yasushi Kogo
- RIKEN Preventive Medicine and Diagnosis Innovation ProgramYokohamaJapan
| | - Satoshi Tsuneda
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Akimichi Ohsaka
- Department of Transfusion Medicine and Stem Cell RegulationJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Masafumi Ito
- Department of PathologyJapanese Red Cross Nagoya First HospitalNagoyaJapan
| | - Marito Araki
- Department of Transfusion Medicine and Stem Cell RegulationJuntendo University Graduate School of MedicineTokyoJapan
| | - Norio Komatsu
- Department of HematologyJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|