1
|
Okada R, Asakage T. Near-infrared photoimmunotherapy: basics and clinical application. Jpn J Clin Oncol 2025:hyaf069. [PMID: 40319478 DOI: 10.1093/jjco/hyaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Use of antibody-drug conjugates (ADCs) is rapidly increasing in the field of oncology. While ADCs exhibit strong and cell-selective cytotoxicity, they do not show spatial selectivity. Near-infrared photoimmunotherapy (NIR-PIT, Alluminox™) utilizes photoactivatable ADCs, that is, antibody-photoabsorber conjugates (APCs). The photoabsorber used in NIR-PIT, IRDye700DX (IR700), is activated by light of ~690 nm wavelength. APCs, usually administered by intravenous injection, bind to the target cell surface, and subsequent excitation-light illumination dramatically changes the status of IR700 from hydrophilic to hydrophobic, inducing aggregation of the APC-target molecule complex and cell burst. Dying cells release neoantigens as well as damage-associated molecular patterns, resulting in immunogenic cell death (ICD). Based on the favorable results of clinical trials, epidermal growth factor-targeted NIR-PIT has been performed in Japan since 2021 for patients with unresectable head and neck cancers (HNCs). Since pain and local edema are frequent adverse events (AEs), various measures have been taken against these AEs. Because NIR-PIT induces ICD, combining NIR-PIT with immune checkpoint inhibitor (ICI) therapy is thought to be a rather effective strategy. NIR-PIT could also locally destroy immune suppressor cells, such as regulatory T cells, in the tumor microenvironment. Currently, numerous clinical trials are under way to evaluate the efficacy of NIR-PIT as well as of combined NIR-PIT plus ICI therapy. In this review article, we describe the basics of NIT-PIT, results of translational experiments, current clinical application of NIT-PIT in HNCs, and relevant ongoing clinical trials.
Collapse
Affiliation(s)
- Ryuhei Okada
- Department of Head and Neck Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Okuyama S, Fujimura D, Furusawa A, Fukushima H, Okada R, Ogura T, Nishimura M, Choyke PL, Kobayashi H. Urinary IR700 Ligand as an Early Biomarker of Therapeutic Efficacy of Near-Infrared Photoimmunotherapy. ACS OMEGA 2025; 10:6983-6991. [PMID: 40028135 PMCID: PMC11866193 DOI: 10.1021/acsomega.4c09850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cell-selective cancer therapy employing monoclonal antibody-photoabsorber conjugates (APCs) and near-infrared (NIR) light. When exposed to NIR light, the photoabsorber, IR700, releases an axial ligand, resulting in a transition of the remaining molecule from water-soluble to hydrophobic. This results in the death of APC-bound cells by physical damage to the cell membrane. The amount of released IR700 ligand reflects the completeness of the photochemical reaction and, therefore, can be a biomarker for treatment efficacy. In this study, we developed and validated a quantitative analytic method for detecting excreted IR700 ligands in urine using a liquid chromatograph-triple quadrupole mass spectrometer (LC-MS/MS). In A431 tumor-bearing mice treated with NIR-PIT, the urinary ligand increased with increasing the light dose, which was positively correlated with the loss of fluorescence and therapeutic effects. This study suggests that quantitative analysis of urinary ligands using LC-MS/MS can be a rapid biomarker of NIR-PIT efficacy.
Collapse
Affiliation(s)
- Shuhei Okuyama
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daiki Fujimura
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aki Furusawa
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hiroshi Fukushima
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ryuhei Okada
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tairo Ogura
- Shimadzu
Scientific Instruments, Columbia, Maryland 21046, United States
| | - Masayuki Nishimura
- Shimadzu
Scientific Instruments, Columbia, Maryland 21046, United States
| | - Peter L. Choyke
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hisataka Kobayashi
- Molecular
Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Okada R, Ito T, Kawabe H, Tsutsumi T, Asakage T. Mixed reality-supported near-infrared photoimmunotherapy for oropharyngeal cancer: a case report. Ann Med Surg (Lond) 2024; 86:5551-5556. [PMID: 39239041 PMCID: PMC11374202 DOI: 10.1097/ms9.0000000000002366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/05/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction and importance Near-infrared photoimmunotherapy (NIR-PIT, Alluminox) uses an antibody-photoabsorber conjugate and light excitation, requiring precise illumination. Mixed reality (MR) technology can enhance medical procedures through advanced visualization and planning. Case presentation An 86-year-old man with recurrent oropharyngeal cancer and right cervical metastasis received NIR-PIT. Three-dimensional models from computed tomography (CT) and FDG-PET/CT images were used as holograms on a head-mounted display (HMD) for precise light targeting. Clinical discussion HMD-MR technology was utilized for preoperative simulation and guided ideal light direction during surgery. This improved the effectiveness of NIR-PIT. Conclusion Three months post-treatment, no residual lesion was observed, demonstrating the utility of HMD-MR technology in optimizing NIR-PIT outcomes.
Collapse
Affiliation(s)
- Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University
| | - Taku Ito
- Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kawabe
- Department of Head and Neck Surgery, Tokyo Medical and Dental University
| | - Takeshi Tsutsumi
- Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University
| |
Collapse
|
4
|
Fukushima H, Takao S, Furusawa A, Valera Romero V, Gurram S, Kato T, Okuyama S, Kano M, Choyke PL, Kobayashi H. Near-infrared photoimmunotherapy targeting Nectin-4 in a preclinical model of bladder cancer. Cancer Lett 2024; 585:216606. [PMID: 38272345 PMCID: PMC10923129 DOI: 10.1016/j.canlet.2023.216606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Enfortumab vedotin (EV), an antibody-drug conjugate (ADC) that targets Nectin-4, has shown promising results in the treatment of bladder cancer. However, multiple resistance mechanisms that are unique to ADCs limit the therapeutic potential of EV in clinical practice. Here, we developed and tested a Nectin-4-targeted near-infrared photoimmunotherapy (NIR-PIT) that utilizes the same target as EV but utilizes a distinct cytotoxic and immunotherapeutic pathway in preclinical models of bladder cancer. NIR-PIT was effective in vitro against luminal subtype human bladder cancer cell lines (RT4, RT112, MGH-U3, SW780, and HT1376-luc), but not against other subtype cell lines (UMUC3 and T24). In vivo, the tumor site was clearly visible by Nectin-4-IR700 fluorescence 24 h after its administration, suggesting the potential as an intraoperative imaging modality. NIR-PIT significantly suppressed tumor growth and prolonged survival in SW780 and RT112 xenograft models. Weekly treatment with NIR-PIT further improved tumor control in RT112 xenograft models. The effectiveness of NIR-PIT was also confirmed in HT1376-luc orthotopic xenograft models. Histological analysis verified that NIR-PIT induced a significant pathologic response. Taken together, Nectin-4-targeted NIR-PIT shows promise as a treatment for luminal subtype bladder cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Valera Romero
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Takamatsu T, Tanaka H, Yano T. Near-Infrared Fluorescence Imaging Sensor with Laser Diffuser for Visualizing Photoimmunotherapy Effects under Endoscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:1487. [PMID: 38475023 DOI: 10.3390/s24051487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The drug efficacy evaluation of tumor-selective photosensitive substances was expected to be enabled by imaging the fluorescence intensity in the tumor area. However, fluorescence observation is difficult during treatments that are performed during gastrointestinal endoscopy because of the challenges associated with including the fluorescence filter in the camera part. To address this issue, this study developed a device that integrates a narrow camera and a laser diffuser to enable fluorescence imaging through a forceps port. This device was employed to demonstrate that a laser diffuser with an NIR fluorescence imaging sensor could be delivered through a 3.2 mm diameter port. In addition, fluorescence images of Cetuximab-IR700 were successfully observed in two mice, and the fluorescence intensity confirmed that the fluorescence decayed within 330 s. This device is expected to have practical application as a tool to identify the optimal irradiation dose for tumor-selective photosensitive substances under endoscopy.
Collapse
Affiliation(s)
- Toshihiro Takamatsu
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Chiba, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Chiba, Japan
| | - Hideki Tanaka
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan
| | - Tomonori Yano
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Chiba, Japan
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Chiba, Japan
| |
Collapse
|
6
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
7
|
Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Am J Cancer Res 2022; 12:7108-7131. [PMID: 36276636 PMCID: PMC9576624 DOI: 10.7150/thno.74820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment modality based on a target-specific photosensitizer conjugate (TSPC) composed of an NIR phthalocyanine photosensitizer and an antigen-specific recognition system. NIR-PIT has predominantly been used for targeted therapy of tumors via local irradiation with NIR light, following binding of TSPC to antigen-expressing cells. Physical stress-induced membrane damage is thought to be a major mechanism underlying NIR-PIT-triggered photokilling. Notably, NIR-PIT can rapidly induce immunogenic cell death and activate the adaptive immune response, thereby enabling its combination with immune checkpoint inhibitors. Furthermore, NIR-PIT-triggered “super-enhanced permeability and retention” effects can enhance drug delivery into tumors. Supported by its potential efficacy and safety, NIR-PIT is a rapidly developing therapeutic option for various cancers. Hence, this review seeks to provide an update on the (i) broad range of target molecules suitable for NIR-PIT, (ii) various types of receptor-selective ligands for designing the TSPC “magic bullet,” (iii) NIR light parameters, and (iv) strategies for enhancing the efficacy of NIR-PIT. Moreover, we review the potential application of NIR-PIT, including the specific design and efficacy in 19 different cancer types, and its clinical studies. Finally, we summarize possible NIR-PIT applications in noncancerous conditions, including infection, pain, itching, metabolic disease, autoimmune disease, and tissue engineering.
Collapse
Affiliation(s)
- Danfeng Wei
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China.,NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China
| | - Jinxin Qi
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Xiang Wen
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- NHC Key Lab of Transplant Engineering and Immunology, Organ Transplant Center, West China Hospital, Sichuan University, Chengdu, Chengdu 610041, China.,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University
| |
Collapse
|
8
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
9
|
Monaco H, Yokomizo S, Choi HS, Kashiwagi S. Quickly evolving near‐infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW 2022. [DOI: 10.1002/viw.20200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hailey Monaco
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
- Department of Radiological Sciences Tokyo Metropolitan University Arakawa Tokyo Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
10
|
Takashima K, Koga Y, Anzai T, Migita K, Yamaguchi T, Ishikawa A, Sakashita S, Yasunaga M, Yano T. Evaluation of Fluorescence Intensity and Antitumor Effect Using Real-Time Imaging in Photoimmunotherapy. Pharmaceuticals (Basel) 2022; 15:223. [PMID: 35215338 PMCID: PMC8880675 DOI: 10.3390/ph15020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Photoimmunotherapy (PIT) is a promising tumor-selective treatment method that uses light-absorbing dye-conjugated antibodies and light irradiation. It has been reported that IR700 fluorescence changes with light irradiation. The purpose of this study was to investigate the fluorescence intensity and antitumor effect of PIT using real-time fluorescence observation of tumors and predict the required irradiation dose. The near-infrared camera system LIGHTVISION was used to image IR700 during PIT treatment. IR700 showed a sharp decrease in fluorescence intensity in the early stage of treatment and almost reached a plateau at an irradiation dose of 40 J/cm. Cetuximab-PIT for A431 xenografts was performed at multiple doses from 0-100 J/cm. A significant antitumor effect was observed at 40 J/cm compared to no irradiation, and there was no significant difference between 40 J/cm and 100 J/cm. These results suggest that the rate of decay of the tumor fluorescence intensity correlates with the antitumor effect by real-time fluorescence imaging during PIT. In addition, when the fluorescence intensity of the tumor plateaued in real-time fluorescence imaging, it was assumed that the laser dose was necessary for treatment.
Collapse
Affiliation(s)
- Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- NEXT Medical Device Innovation Center, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikatsu Koga
- Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan;
| | - Takahiro Anzai
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (T.A.); (M.Y.)
| | - Kayo Migita
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Toru Yamaguchi
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Akihiro Ishikawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Shingo Sakashita
- Division of Developmental Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan;
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (T.A.); (M.Y.)
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- NEXT Medical Device Innovation Center, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| |
Collapse
|
11
|
Zhang X, Nakajima T, Mizoi K, Tsushima Y, Ogihara T. Imaging modalities for monitoring acute therapeutic effects after near-infrared photoimmunotherapy in vivo. JOURNAL OF BIOPHOTONICS 2022; 15:e202100266. [PMID: 34783185 DOI: 10.1002/jbio.202100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) induces immediate cell death after irradiation with near-infrared (NIR) light. Acute therapeutic effects caused by NIR-PIT before the change of tumor size is essential to be monitored by imaging modalities. We summarized and compared the imaging modalities for evaluating acute therapeutic effects after NIR-PIT, and aimed to provide a better understanding of advantages and disadvantages of each modality for evaluation in clinical applications. Fluorescence imaging and fluorescence lifetime, with high resolution, remains high accumulation of fluorescence dyes in the normal organs. High resolution and noninvasiveness are the major advantages of magnetic resonance imaging, while 18 F-fluorodeoxyglucose positron emission tomography provides information about the glucose metabolism. Optical coherence tomography provided more information about the blood vessels. Thus, all of the imaging modalities play an important role in evaluating acute therapeutic effects after NIR-PIT. Clinicians should choose suitable modality according to specific purpose and conditions in clinical application.
Collapse
Affiliation(s)
- Xieyi Zhang
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Takuo Ogihara
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| |
Collapse
|
12
|
Matsuoka K, Sato M, Sato K. Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy 2021; 13:1427-1438. [PMID: 34693721 DOI: 10.2217/imt-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted treatment for cancers achieved by injecting a conjugate of IRDye700DX® (IR700), a water-soluble silicon phthalocyanine derivative in the near infrared, and a monoclonal antibody that targets cancer cell antigens. NIR-PIT is a highly specific treatment with few side effects that results in rapid immunogenic cell death. Despite it being a very effective and innovative therapy, there are a few challenges preventing full implementation in clinical practice. These include the limits of near infrared light penetration, selection of targets, concerns about tumor lysis syndrome and drug costs. However, NIR-PIT has been approved by the regulatory authorities in Japan, allowing for exploration of how to mitigate challenges while maximizing the benefits of this treatment modality.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, 464-0814, Japan.,Nagoya University Institute for Advanced Research, Advanced Analytical & Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, 102-8666, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya, 464-8601, Japan
| |
Collapse
|
13
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Okada R, Furusawa A, Inagaki F, Wakiyama H, Kato T, Okuyama S, Furumoto H, Fukushima H, Choyke PL, Kobayashi H. Endoscopic near-infrared photoimmunotherapy in an orthotopic head and neck cancer model. Cancer Sci 2021; 112:3041-3049. [PMID: 34101947 PMCID: PMC8353912 DOI: 10.1111/cas.15013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cell selective cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. NIR-PIT targeting epidermal growth factor receptor (EGFR) in head and neck cancer (HNC) was conditionally approved in Japan in 2020. APC-bound tumors can be detected using endoscopic fluorescence imaging, whereas NIR light can be delivered using endoscopic fiber optics. The aims of this study were: (1) to assess the feasibility of endoscopic NIR-PIT in an orthotopic HNC model using a CD44-expressing MOC2-luc cell line; and (2) to evaluate quantitative fluorescence endoscopic imaging prior to and during NIR-PIT. The results were compared in 3 experimental groups: (1) untreated controls, (2) APC injection without light exposure (APC-IV), and (3) APC injection followed by NIR light exposure (NIR-PIT). APC injected groups showed significantly higher fluorescence signals for IR700 compared with the control group prior to therapeutic NIR light exposure, and the fluorescence signal significantly decreased in the NIR-PIT group after light exposure. After treatment, the NIR-PIT group showed significantly attenuated bioluminescence compared with the control and the APC-IV groups. Histology demonstrated diffuse necrotic death of the cancer cells in the NIR-PIT group alone. In conclusion, endoscopically delivered light combined with quantitative fluorescence imaging can be used to "see and treat" HNC. This method could also be applied to other types of cancer approachable with endoscopy.
Collapse
Affiliation(s)
- Ryuhei Okada
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Aki Furusawa
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Fuyuki Inagaki
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Hiroaki Wakiyama
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Takuya Kato
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Shuhei Okuyama
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Hideyuki Furumoto
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Hiroshi Fukushima
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Peter L. Choyke
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Hisataka Kobayashi
- Molecular Imaging BranchCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
15
|
Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Diagnostic imaging in near-infrared photoimmunotherapy using a commercially available camera for indocyanine green. Cancer Sci 2021; 112:1326-1330. [PMID: 33543819 PMCID: PMC7935778 DOI: 10.1111/cas.14809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer treatment, which was recently approved in Japan for patients with inoperable head and neck cancer. NIR-PIT utilizes antibody-IRDye700DX (IR700) conjugates and NIR light at a wavelength of 690 nm. NIR light exposure leads to physicochemical changes in the antibody-IR700 conjugate cell receptor complex, inducing rapid necrotic cell death. Just as fluorescence guided surgery is useful for surgeons to resect tumors completely, real-time information of tumor locations would help clinicians irradiate NIR light more precisely. IR700 is a fluorescence dye that emits at 702 nm; however, there is no clinically available device optimized for detecting this fluorescence. On the other hand, many indocyanine green (ICG) fluorescence imaging devices have been approved for clinical use. Therefore, we investigated whether LIGHTVISION, one of the clinically available ICG cameras, could be employed for tumor detection. We hypothesized that irradiation with even low-power 690-nm laser light, attenuated by 99% with a neutral-density filter, could be detected with LIGHTVISION without fluorescence decay or therapeutic effect because of the long emission tail of IR700 beyond 800 nm (within the detection range of LIGHTVISION). We demonstrated that the LIGHTVISION camera, originally designed for ICG detection, can detect the tail of IR700 fluorescence in real time, thus enabling the visualization of target tumors.
Collapse
Affiliation(s)
- Fuyuki F Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daiki Fujimura
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|