1
|
Blasi M, Kuon J, Lüders H, Misch D, Kauffmann-Guerrero D, Hilbrandt M, Kazdal D, Falkenstern-Ge RF, Hackanson B, Dintner S, Faehling M, Kirchner M, Volckmar AL, Kopp HG, Allgäuer M, Grohé C, Tufman A, Reck M, Frost N, Stenzinger A, Thomas M, Christopoulos P. First-line immunotherapy for lung cancer with MET exon 14 skipping and the relevance of TP53 mutations. Eur J Cancer 2024; 199:113556. [PMID: 38271745 DOI: 10.1016/j.ejca.2024.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The efficacy of checkpoint inhibitors for non-small cell lung cancer (NSCLC) with MET exon 14 skipping (METΔ14ex) remains controversial. MATERIALS AND METHODS 110 consecutive METΔ14ex NSCLC patients receiving first-line chemotherapy (CHT) and/or immunotherapy (IO) in 10 German centers between 2016-2022 were analyzed. RESULTS Combined CHT-IO was given to 35/110 (32%) patients, IO alone to 43/110 (39%), and CHT to 32/110 (29%) upfront. Compared to CHT, CHT-IO showed longer progression-free survival (median PFS 6 vs. 2.5 months, p = 0.004), more objective responses (ORR 49% vs. 28%, p = 0.086) and numerically longer overall survival (OS 16 vs. 10 months, p = 0.240). For IO monotherapy, OS (14 vs. 16 months) and duration of response (26 vs. 22 months) were comparable to those of CHT-IO. Primary progressive disease (PD) was more frequent with IO compared to CHT-IO (13/43 vs. 3/35, p = 0.018), particularly for never-smokers (p = 0.041). Higher PD-L1 TPS were not associated with better IO outcomes, but TP53 mutated tumors showed numerically improved ORR (56% vs. 32%, p = 0.088) and PFS (6 vs. 3 months, p = 0.160), as well as longer OS in multivariable analysis (HR=0.54, p = 0.034) compared to their wild-type counterparts. Any second-line treatment was administered to 35/75 (47%) patients, with longer survival for capmatinib or tepotinib compared to crizotinib (PFS 10 vs. 3 months, p = 0.013; OS 16 vs. 13 months, p = 0.270). CONCLUSION CHT-IO is superior to CHT, and IO alone also effective for METΔ14ex NSCLC, especially in the presence of TP53 mutations and independent of PD-L1 expression, but never-smokers are at higher risk of primary PD.
Collapse
Affiliation(s)
- Miriam Blasi
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jonas Kuon
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany; Lungenklinik Loewenstein, Department of Thoracic Oncology, Loewenstein, Germany
| | - Heike Lüders
- Department of Respiratory Medicine, Evangelische Lungenklinik Berlin, Berlin, Germany
| | - Daniel Misch
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, University Hospital, LMU Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Hilbrandt
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kazdal
- Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Björn Hackanson
- Department of Hematology/Oncology, University Medical Center Augsburg, Augsburg, Germany as part of the BZKF (Bavarian Center for Cancer Research) and Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sebastian Dintner
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany, part of the Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Martin Faehling
- Klinik für Kardiologie, Angiologie und Pneumologie, Klinikum Esslingen, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Georg Kopp
- Robert Bosch Centrum für Tumorerkrankungen (RBCT), Stuttgart, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Grohé
- Department of Respiratory Medicine, Evangelische Lungenklinik Berlin, Berlin, Germany
| | - Amanda Tufman
- Department of Medicine V, University Hospital, LMU Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Reck
- Department of Pneumology, LungenClinic Großhansdorf, Großhansdorf, Germany; Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Nikolaj Frost
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
2
|
Ba H, Dai Z, Zhang Z, Zhang P, Yin B, Wang J, Li Z, Zhou X. Antitumor effect of CAR-T cells targeting transmembrane tumor necrosis factor alpha combined with PD-1 mAb on breast cancers. J Immunother Cancer 2023; 11:e003837. [PMID: 36720496 PMCID: PMC10098269 DOI: 10.1136/jitc-2021-003837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Our previous study showed that transmembrane tumor necrosis factor alpha (tmTNF-α) is overexpressed in primary breast cancers including triple-negative breast cancers (TNBCs). Chimeric antigen receptor engineered-T (CAR-T) cells have been successfully used mainly in B-cell malignancies. METHODS We generated CAR-T cells targeting tmTNF-α but not secreted tumor necrosis factor alpha and assessed the antitumor effect of the CAR-T cells on tmTNF-α-expressing breast cancer cells in vitro and in vivo. RESULTS Our tmTNF-α CAR-T cells showed potent cytotoxicity against tmTNF-α-expressing breast cancer cells but not tmTNF-α-negative tumor cells with increased secretion of interferon gamma (IFN-γ) and interleukin (IL)-2 in vitro. In tmTNF-α-overexpressing TNBC-bearing mice, the tmTNF-α CAR-T therapy induced evident tumor regression, prolonged survival and increased serum concentrations of IFN-γ and IL-2. However, we found thattmTNF-α induced programmed death-ligand 1 (PD-L1) expression through the p38 pathway via TNF receptor (TNFR) and through the NF-κB and AKT pathways via outside-to-inside (reverse) signaling, which might limit the efficacy of the CAR-T cell therapy. Blockage of the PD-L1/programmed death-1 (PD-1) pathway by PD-1 monoclonal antibody significantly enhanced the antitumor effect of the tmTNF-α CAR-T cell therapy in vitro and in vivo, and the combination was effective for antiprimary tumors and had a tendency to increase the antimetastasis effect of the CAR-T cell therapy. CONCLUSION Our findings suggest a potent antitumor efficacy of the tmTNF-α CAR-T cells that can be enhanced by anti-PD-L1/PD-1 because high PD-L1 expression in TNBC was induced by the tmTNF-α signaling, indicating a promising individual therapy for tmTNF-α-positive breast cancers including TNBC.
Collapse
Affiliation(s)
- Hongping Ba
- Department of Immunology, College of Basic Medicine of Tongji Medical College of Huazhong University of Scince and Technology, Wuhan, Hubei, People's Republic of China
| | - Zigang Dai
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Zunyue Zhang
- Department of Immunology, College of Basic Medicine of Tongji Medical College of Huazhong University of Scince and Technology, Wuhan, Hubei, People's Republic of China
| | - Peng Zhang
- Department of Immunology, College of Basic Medicine of Tongji Medical College of Huazhong University of Scince and Technology, Wuhan, Hubei, People's Republic of China
| | - Bingjiao Yin
- Department of Immunology, College of Basic Medicine of Tongji Medical College of Huazhong University of Scince and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Wang
- Department of Immunology, College of Basic Medicine of Tongji Medical College of Huazhong University of Scince and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhuoya Li
- Department of Immunology, College of Basic Medicine of Tongji Medical College of Huazhong University of Scince and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
PD-L1 enhances migration and invasion of trophoblasts by upregulating ARHGDIB via transcription factor PU.1. Cell Death Dis 2022; 8:395. [PMID: 36138021 PMCID: PMC9500068 DOI: 10.1038/s41420-022-01171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
As the main constituent cells of the human placenta, trophoblasts proliferate, differentiate, and invade the uterine endometrium via a series of processes, which are regulated exquisitely through intercellular signaling mediated by hormones, cytokines, and growth factors. Programmed cell death ligand 1 (PD-L1) is a biomarker of the response to immune checkpoint inhibitors and can regulate maternal-fetal immune tolerance during pregnancy progression. Recently, it was found that PD-L1 may regulate obstetric complications by affecting the function of trophoblasts. Therefore, we examined the expression and localization of PD-L1 in the human placenta and observed the effects of PD-L1 on trophoblasts migration and invasion in both the trophoblasts line HTR-8/SVneo and an extravillous explant culture model. Finally, we explored the molecular mechanisms underlying PD-L1-regulated trophoblasts migration and invasion through RNA sequencing and bioinformatics analysis. Our data showed that PD-L1 was mainly expressed in syncytiotrophoblasts and that its protein levels increased with gestational age. Interestingly, the protein expression of PD-L1 was significantly decreased in placentas from pregnancies with preeclampsia compared with normal placentas. Importantly, the migration and invasion abilities of trophoblasts were significantly changed after knockdown or overexpression of PD-L1 in HTR-8/SVneo cells and an extravillous explant culture model, which was partially mediated through the transcription factor PU.1 (encoded by Spi1)-regulated Rho GDP-dissociation inhibitor beta (ARHGDIB) expression. These results suggested that PD-L1 was highly involved in the regulation of trophoblasts migration and invasion, providing a potential target for the diagnosis and treatment of placenta-derived pregnancy disorders.
Collapse
|
4
|
Sun Z, Yin S, Zhao C, Fan L, Hu H. Inhibition of PD-L1-mediated tumor-promoting signaling is involved in the anti-cancer activity of β-tocotrienol. Biochem Biophys Res Commun 2022; 617:33-40. [PMID: 35689840 DOI: 10.1016/j.bbrc.2022.05.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
Abstract
Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is commonly overexpressed on the surface of many tumor types including lung and prostate cancer. PD-L1 can exert cancer-promoting activity through either suppressing T cell-mediated immune response or activating tumor-intrinsic signaling. Here, we demonstrated that β-tocotrienol (β-T3), an isomer of vitamin E, effectively inhibited PD-L1 expression both in vitro and in vivo, which was mechanistically associated inactivating JAK2/STAT3 pathway. Down-regulating PD-L1 expression by β-T3 led to enhanced immune response and inactivation of PD-L1-induced tumor-intrinsic signaling, which in turn contributed to its anticancer activity. This study uncovered a novel mechanism involved in the anticancer effect of β-T3.
Collapse
Affiliation(s)
- Zhenou Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No.2 Yunmingyuan West Road, Haidian District, Beijing, 100094, China.
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
5
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
6
|
Lu S, Sun Z, Hu W, Yin S, Zhao C, Hu H. PD-L1 positively regulates MET phosphorylation through inhibiting PTP1B. Cancer Sci 2021; 112:1878-1887. [PMID: 33583114 PMCID: PMC8088939 DOI: 10.1111/cas.14844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023] Open
Abstract
Increasing bodies of evidence support the involvement of tumor-intrinsic action in PD-L1-mediated cancer progression. However, the mechanisms underlying the tumor-intrinsic function of PD-L1 are less well understood. In the present study, we found a positive correlation between PD-L1 expression and MET phosphorylation in lung cancer and melanoma cell lines. PD-L1 inhibition led to a decrease in MET phosphorylation, while PD-L1 induction by IFN-γ resulted in a PD-L1-dependent increase of MET phosphorylation both in vitro and in vivo. The results indicated that MET phosphorylation can be positively regulated by PD-L1. Furthermore, we identified PTP1B as a mediator contributing to the regulation of MET phosphorylation by PD-L1. In agreement with the induction of MET phosphorylation by PD-L1, inhibition of PD-L1 caused reduced phosphorylation of ERKs, a known downstream kinase of MET, and inhibited cell proliferation. Collectively, the present study demonstrated for the first time that the MET pathway, as a downstream of PD-L1, contributed to its tumor-intrinsic effect, and provided a novel mechanistic explanation for the tumor-intrinsic function of PD-L1 and a rationale for the combination of immunotherapy and MET-targeted therapy in cancer treatment.
Collapse
Affiliation(s)
- Shangyun Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Zhenou Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Wenli Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Chong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| |
Collapse
|