1
|
Saadh MJ, Ghnim ZS, Mahdi MS, Chandra M, Ballal S, Bareja L, Chaudhary K, Sharma RSK, Gupta S, Taher WM, Alwan M, Jawad MJ, Hamad AK. Decoding the Role of Kinesin Superfamily Proteins in Glioma Progression. J Mol Neurosci 2025; 75:10. [PMID: 39847238 DOI: 10.1007/s12031-025-02308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Glioma is a highly aggressive and invasive brain tumor with limited treatment options, highlighting the need for novel therapeutic approaches. Kinesin superfamily proteins (KIFs) are a diverse group of motor proteins that play essential roles in cellular processes such as mitosis, intracellular transport, and signal transduction, all of which are crucial for tumorigenesis. This review focuses on the multifaceted role of KIFs in glioma, examining their clinical relevance, contribution to tumor progression, and potential as therapeutic targets. We discuss how KIFs influence key aspects of glioma biology, including cell proliferation, invasion, migration, and metastasis. Furthermore, we explore the regulation of the cell cycle and critical signaling pathways associated with glioma, such as PI3K-Akt, Wnt/β-catenin, and Hedgehog signaling by KIFs. The review also addresses the emerging interplay between KIFs and non-coding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), in glioma progression. Finally, we examine current therapeutic strategies targeting KIFs, including immunotherapy, chemotherapy, and small-molecule inhibitors, and their potential to improve treatment outcomes for glioma patients. By synthesizing these insights, this review underscores the significance of KIFs in glioma pathogenesis and their promise as novel therapeutic targets in the fight against glioma.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Muktesh Chandra
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - R S K Sharma
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Ishii G. New insights into cancer pathology learned from the dynamics of cancer-associated fibroblasts. Pathol Int 2024; 74:493-507. [PMID: 38923250 DOI: 10.1111/pin.13461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Paget's "Seed and Soil" theory, proposed in 1889, emphasizes the importance of the microenvironment where cancer cells grow in metastatic sites. Over a century later, this concept remains a cornerstone in comprehending cancer biology and devising treatment strategies. The "Seed and Soil" theory, which initially explained how cancer spreads to distant organs, now also applies to the tumor microenvironment (TME) within primary tumors. This theory emphasizes the critical interaction between cancer cells ("seeds") and their surrounding environment ("soil") and how this interaction affects both tumor progression within the primary site and at metastatic sites. An important point to note is that the characteristics of the TME are not static but dynamic, undergoing substantial changes during tumor progression and after treatment with therapeutic drugs. Cancer-associated fibroblasts (CAFs), recognized as the principal noncancerous cellular component within the TME, play multifaceted roles in tumor progression including promoting angiogenesis, remodeling the extracellular matrix, and regulating immune responses. In this comprehensive review, we focus on the findings regarding how the dynamics of CAFs contribute to cancer progression and drug sensitivity. Understanding the dynamics of CAFs could provide new insights into cancer pathology and lead to important advancements in cancer research and treatment.
Collapse
Affiliation(s)
- Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
- Laboratory of Cancer Biology, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
3
|
Peng M, Ying Y, Zhang Z, Liu L, Wang W. Reshaping the Pancreatic Cancer Microenvironment at Different Stages with Chemotherapy. Cancers (Basel) 2023; 15:2448. [PMID: 37173915 PMCID: PMC10177210 DOI: 10.3390/cancers15092448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The dynamic tumor microenvironment, especially the immune microenvironment, during the natural progression and/or chemotherapy treatment is a critical frontier in understanding the effects of chemotherapy on pancreatic cancer. Non-stratified pancreatic cancer patients always receive chemotherapeutic strategies, including neoadjuvant chemotherapy and adjuvant chemotherapy, predominantly according to their physical conditions and different disease stages. An increasing number of studies demonstrate that the pancreatic cancer tumor microenvironment could be reshaped by chemotherapy, an outcome caused by immunogenic cell death, selection and/or education of preponderant tumor clones, adaptive gene mutations, and induction of cytokines/chemokines. These outcomes could in turn impact the efficacy of chemotherapy, making it range from synergetic to resistant and even tumor-promoting. Under chemotherapeutic impact, the metastatic micro-structures in the primary tumor may be built to leak tumor cells into the lymph or blood vasculature, and micro-metastatic/recurrent niches rich in immunosuppressive cells may be recruited by cytokines and chemokines, which provide housing conditions for these circling tumor cells. An in-depth understanding of how chemotherapy reshapes the tumor microenvironment may lead to new therapeutic strategies to block its adverse tumor-promoting effects and prolong survival. In this review, reshaped pancreatic cancer tumor microenvironments due to chemotherapy were reflected mainly in immune cells, pancreatic cancer cells, and cancer-associated fibroblast cells, quantitatively, functionally, and spatially. Additionally, small molecule kinases and immune checkpoints participating in this remodeling process caused by chemotherapy are suggested to be blocked reasonably to synergize with chemotherapy.
Collapse
Affiliation(s)
- Maozhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (M.P.); (Y.Y.); (Z.Z.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Iliadi C, Verset L, Bouchart C, Martinive P, Van Gestel D, Krayem M. The current understanding of the immune landscape relative to radiotherapy across tumor types. Front Immunol 2023; 14:1148692. [PMID: 37006319 PMCID: PMC10060828 DOI: 10.3389/fimmu.2023.1148692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Radiotherapy is part of the standard of care treatment for a great majority of cancer patients. As a result of radiation, both tumor cells and the environment around them are affected directly by radiation, which mainly primes but also might limit the immune response. Multiple immune factors play a role in cancer progression and response to radiotherapy, including the immune tumor microenvironment and systemic immunity referred to as the immune landscape. A heterogeneous tumor microenvironment and the varying patient characteristics complicate the dynamic relationship between radiotherapy and this immune landscape. In this review, we will present the current overview of the immunological landscape in relation to radiotherapy in order to provide insight and encourage research to further improve cancer treatment. An investigation into the impact of radiation therapy on the immune landscape showed in several cancers a common pattern of immunological responses after radiation. Radiation leads to an upsurge in infiltrating T lymphocytes and the expression of programmed death ligand 1 (PD-L1) which can hint at a benefit for the patient when combined with immunotherapy. In spite of this, lymphopenia in the tumor microenvironment of 'cold' tumors or caused by radiation is considered to be an important obstacle to the patient's survival. In several cancers, a rise in the immunosuppressive populations is seen after radiation, mainly pro-tumoral M2 macrophages and myeloid-derived suppressor cells (MDSCs). As a final point, we will highlight how the radiation parameters themselves can influence the immune system and, therefore, be exploited to the advantage of the patient.
Collapse
Affiliation(s)
- Chrysanthi Iliadi
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Philippe Martinive
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| | - Mohammad Krayem
- Department of Radiation Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Brussels, Belgium
| |
Collapse
|
5
|
Chemotherapy to potentiate the radiation-induced immune response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:143-173. [PMID: 36997268 DOI: 10.1016/bs.ircmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Chemoradiation (CRT) is a conventional therapy used in local cancers, especially when they are locally advanced. Studies have shown that CRT induces strong anti-tumor responses involving several immune effects in pre-clinical models and humans. In this review, we have described the various immune effects involved in CRT efficacy. Indeed, effects such as immunological cell death, activation and maturation of antigen-presenting cells, and activation of an adaptive anti-tumor immune response are attributed to CRT. As often described in other therapies, various immunosuppressive mechanisms mediated, in particular, by Treg and myeloid populations may reduce the CRT efficacy. We have therefore discussed the relevance of combining CRT with other therapies to potentiate the CRT-induced anti-tumor effects.
Collapse
|
6
|
Costa AD, Väyrynen SA, Chawla A, Zhang J, Väyrynen JP, Lau MC, Williams HL, Yuan C, Morales-Oyarvide V, Elganainy D, Singh H, Cleary JM, Perez K, Ng K, Freed-Pastor W, Mancias JD, Dougan SK, Wang J, Rubinson DA, Dunne RF, Kozak MM, Brais L, Reilly E, Clancy T, Linehan DC, Chang DT, Hezel AF, Koong AC, Aguirre A, Wolpin BM, Nowak JA. Neoadjuvant Chemotherapy Is Associated with Altered Immune Cell Infiltration and an Anti-Tumorigenic Microenvironment in Resected Pancreatic Cancer. Clin Cancer Res 2022; 28:5167-5179. [PMID: 36129461 PMCID: PMC9999119 DOI: 10.1158/1078-0432.ccr-22-1125] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Neoadjuvant chemotherapy is increasingly administered to patients with resectable or borderline resectable pancreatic ductal adenocarcinoma (PDAC), yet its impact on the tumor immune microenvironment is incompletely understood. EXPERIMENTAL DESIGN We employed quantitative, spatially resolved multiplex immunofluorescence and digital image analysis to identify T-cell subpopulations, macrophage polarization states, and myeloid cell subpopulations in a multi-institution cohort of up-front resected primary tumors (n = 299) and in a comparative set of resected tumors after FOLFIRINOX-based neoadjuvant therapy (n = 36) or up-front surgery (n = 30). Multivariable-adjusted Cox proportional hazards models were used to evaluate associations between the immune microenvironment and patient outcomes. RESULTS In the multi-institutional resection cohort, immune cells exhibited substantial heterogeneity across patient tumors and were located predominantly in stromal regions. Unsupervised clustering using immune cell densities identified four main patterns of immune cell infiltration. One pattern, seen in 20% of tumors and characterized by abundant T cells (T cell-rich) and a paucity of immunosuppressive granulocytes and macrophages, was associated with improved patient survival. Neoadjuvant chemotherapy was associated with a higher CD8:CD4 ratio, greater M1:M2-polarized macrophage ratio, and reduced CD15+ARG1+ immunosuppressive granulocyte density. Within neoadjuvant-treated tumors, 72% showed a T cell-rich pattern with low immunosuppressive granulocytes and macrophages. M1-polarized macrophages were located closer to tumor cells after neoadjuvant chemotherapy, and colocalization of M1-polarized macrophages and tumor cells was associated with greater tumor pathologic response and improved patient survival. CONCLUSIONS Neoadjuvant chemotherapy with FOLFIRINOX shifts the PDAC immune microenvironment toward an anti-tumorigenic state associated with improved patient survival.
Collapse
Affiliation(s)
- Andressa Dias Costa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Sara A. Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Akhil Chawla
- Department of Surgery, Northwestern Medicine Regional Medical Group, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Jinming Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Juha P. Väyrynen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Hannah L. Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Vicente Morales-Oyarvide
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Dalia Elganainy
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - William Freed-Pastor
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Boston, MA
| | - Stephanie K. Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jiping Wang
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Richard F. Dunne
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - Margaret M. Kozak
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Emma Reilly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Thomas Clancy
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - David C. Linehan
- Department of General Surgery, University of Rochester Medical Center, Rochester, NY
| | - Daniel T. Chang
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford, CA
| | - Aram F. Hezel
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR
| | - Albert C. Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andrew Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Jonathan A. Nowak
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Zhang H, Ye L, Yu X, Jin K, Wu W. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer. Front Immunol 2022; 13:956984. [PMID: 36225934 PMCID: PMC9548645 DOI: 10.3389/fimmu.2022.956984] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer has an exclusive inhibitory tumor microenvironment characterized by a dense mechanical barrier, profound infiltration of immunosuppressive cells, and a lack of penetration of effector T cells, which constitute an important cause for recurrence and metastasis, resistance to chemotherapy, and insensitivity to immunotherapy. Neoadjuvant therapy has been widely used in clinical practice due to its many benefits, including the ability to improve the R0 resection rate, eliminate tumor cell micrometastases, and identify highly malignant tumors that may not benefit from surgery. In this review, we summarize multiple aspects of the effect of neoadjuvant therapy on the immune microenvironment of pancreatic cancer, discuss possible mechanisms by which these changes occur, and generalize the theoretical basis of neoadjuvant chemoradiotherapy combined with immunotherapy, providing support for the development of more effective combination therapeutic strategies to induce potent immune responses to tumors.
Collapse
Affiliation(s)
- Huiru Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Weiding Wu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Tao BY, Liu YY, Liu HY, Zhang ZH, Guan YQ, Wang H, Shi Y, Zhang J. Prognostic Biomarker KIF18A and Its Correlations With Immune Infiltrates and Mitosis in Glioma. Front Genet 2022; 13:852049. [PMID: 35591854 PMCID: PMC9110815 DOI: 10.3389/fgene.2022.852049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Glioma is globally recognised as one of the most frequently occurring primary malignant brain tumours, making the identification of glioma biomarkers critically significant. The protein KIF18A (Kinesin Family Member 18A) is a member of the kinesin superfamily of microtubule-associated molecular motors and has been shown to participate in cell cycle and mitotic metaphase and anaphase. This is the first investigation into the expression of KIF18A and its prognostic value, potential biological functions, and effects on the immune system and mitosis in glioma patients. Methods: Gene expression and clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on data obtained from The Cancer Genome Atlas (TCGA), with additional bioinformatics analyses performed. Statistical analysis was conducted in R software. Clinical samples were used to evaluate the expression of KIF18A via immunohistochemical staining. In addition, the expression level of KIF18A was validated on U87 cell line. Results: Our results highlighted that KIF18A plays a key role as an independent prognostic factor in patients with glioma. KIF18A was highly expressed in glioma tissues, and KIF18A expression was associated with age, World Health Organization grade, isocitrate dehydrogenase (IDH) status, 1p/19q codeletion, primary therapy outcome, and overall survival (OS). Enrichment analysis revealed that KIF18A is closely correlated with the cell cycle and mitosis. Single sample gene set enrichment analysis (ssGSEA) analysis revealed that KIF18A expression was related to the immune microenvironment. The increased expression of KIF18A in glioma was verified in clinical samples and U87 cell line. Conclusion: The identification of KIF18A as a new biomarker for glioma could help elucidate how changes in the glioma cell and immune microenvironment promote glioma malignancy. With further analysis, KIF18A may serve as an independent prognostic indicator for human glioma.
Collapse
Affiliation(s)
- Bing-Yan Tao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yu-Yang Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hong-Yu Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Ze-Han Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yun-Qian Guan
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Rouanet M, Hanoun N, Hubert Lulka, Ferreira C, Garcin P, Sramek M, Jacquemin G, Coste A, Pagan D, Valle C, Sarot E, Pancaldi V, Lopez F, Buscail L, Cordelier P. The antitumoral activity of TLR7 ligands is corrupted by the microenvironment of pancreatic tumors. Mol Ther 2022; 30:1553-1563. [PMID: 35038581 PMCID: PMC9077317 DOI: 10.1016/j.ymthe.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLRs) are key players in the innate immune system. Recent studies have suggested that they may affect the growth of pancreatic cancer, a disease with no cure. Among them, TLR7 shows promise for therapy but may also promotes tumor growth. Thus, we aimed to clarify the therapeutic potential of TLR7 ligands in experimental pancreatic cancer models, to open the door for clinical applications. In vitro, we found that TLR7 ligands strongly inhibit the proliferation of both human and murine pancreatic cancer cells, compared with TLR2 agonists. Hence, TLR7 treatment alters cancer cells' cell cycle and induces cell death by apoptosis. In vivo, TLR7 agonist therapy significantly delays the growth of murine pancreatic tumors engrafted in immunodeficient mice. Remarkably, TLR7 ligands administration instead increases tumor growth and accelerates animal death when tumors are engrafted in immunocompetent models. Further investigations revealed that TLR7 agonists modulate the intratumoral content and phenotype of macrophages and that depleting such tumor-associated macrophages strongly hampers TLR7 agonist-induced tumor growth. Collectively, our findings shine a light on the duality of action of TLR7 agonists in experimental cancer models and call into question their use for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Marie Rouanet
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France; Department of Gastroenterology and University of Toulouse III, Rangueil Hospital, Toulouse, France
| | - Naima Hanoun
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Hubert Lulka
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Cindy Ferreira
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Pierre Garcin
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Martin Sramek
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Godefroy Jacquemin
- Institut RESTORE, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Agnès Coste
- Institut RESTORE, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Delphine Pagan
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Carine Valle
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Emeline Sarot
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Vera Pancaldi
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | - Frédéric Lopez
- Technological cluster, Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université de Toulouse, Toulouse, France
| | - Louis Buscail
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France; Department of Gastroenterology and University of Toulouse III, Rangueil Hospital, Toulouse, France
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de Toulouse, Inserm, CNRS, Université Paul Sabatier, Université de Toulouse, Toulouse, France.
| |
Collapse
|
10
|
Nie H, Wu Y, Ou C, He X. Comprehensive Analysis of SMC Gene Family Prognostic Value and Immune Infiltration in Patients With Pancreatic Adenocarcinoma. Front Med (Lausanne) 2022; 9:832312. [PMID: 35372377 PMCID: PMC8965256 DOI: 10.3389/fmed.2022.832312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant tumor with high morbidity and mortality worldwide. Members from the structural maintenance of chromosomes (SMC) gene family function as oncogenes in various tumor types, but their roles in PAAD have not been elucidated. In this study, we aimed to explore the role of the SMC family in tumor progression and cancer immune infiltration in PAAD using integrative bioinformatic analyses. The results showed that the SMC 1A, 2, 3, 4, and 6 were overexpressed in PAAD tissues; of these, SMC 1A, 4, 5, and 6 could be potential prognostic biomarkers for PAAD. The expression of SMC genes was found to be strongly associated with immune cell infiltration. According to the infiltrative status of various immune cells, the mRNA expression of SMC genes in PAAD was associated with the overall and recurrence-free survival of patients. In conclusion, the SMC gene family is associated with PAAD and may be involved in tumorigenesis and cancer-immune interactions; thus, members from this gene family may serve as promising prognostic and therapeutic biomarkers of PAAD.
Collapse
Affiliation(s)
- Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhao Wu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Okubo S, Suzuki T, Hioki M, Shimizu Y, Toyama H, Morinaga S, Gotohda N, Uesaka K, Ishii G, Takahashi S, Kojima M. The immunological impact of preoperative chemoradiotherapy on the tumor microenvironment of pancreatic cancer. Cancer Sci 2021; 112:2895-2904. [PMID: 33931909 PMCID: PMC8253289 DOI: 10.1111/cas.14914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Several therapeutic regimens, including neoadjuvant chemoradiation therapy (NACRT), have been reported to serve as anticancer immune effectors. However, there remain insufficient data regarding the immune response after NACRT in pancreatic ductal adenocarcinoma (PDAC) patients. Data from 40 PDAC patients that underwent surgical resection after NACRT (NACRT group) and 30 PDAC patients that underwent upfront surgery (US group) were analyzed to examine alterations in immune cell counts/distribution using a multiplexed fluorescent immunohistochemistry system. All immune cells were more abundant in the cancer stroma than in the cancer cell nest regardless of preoperative therapy. Although the stromal counts of CD4+ T cells, CD20+ B cells, and Foxp3+ T cells in the NACRT group were drastically decreased in comparison with those of the US group, counts of these cell types in the cancer cell nest were not significantly different between the two groups. In contrast, CD204+ macrophage counts in the cancer stroma were similar between the NACRT and US groups, while those in the cancer cell nests were significantly reduced in the NACRT group. Following multivariate analysis, only a high CD204+ macrophage count in the cancer cell nest remained an independent predictor of shorter relapse-free survival (odds ratio = 2.37; P = .033). NACRT for PDAC decreased overall immune cell counts, but these changes were heterogeneous within the cancer cell nests and cancer stroma. The CD204+ macrophage count in the cancer cell nest is an independent predictor of early disease recurrence in PDAC patients after NACRT.
Collapse
Affiliation(s)
- Satoshi Okubo
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.,Hepato-Biliary-Pancreatic Surgery Division, Department of Gastroenterological Surgery, Toranomon Hospital, Japan
| | - Toshihiro Suzuki
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.,General Medicinal Education and Research Center, Teikyo University, Tokyo, Japan
| | - Masayoshi Hioki
- Department of Gastroenterological Surgery, Fukuyama City Hospital, Hiroshima, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Aichi, Japan
| | - Hirochika Toyama
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Kanagawa, Japan
| | - Naoto Gotohda
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shinichiro Takahashi
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| |
Collapse
|