1
|
Tang Y, Yi X, Ai J. mRNA vaccines for prostate cancer: A novel promising immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189333. [PMID: 40288658 DOI: 10.1016/j.bbcan.2025.189333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of advanced prostate cancer (PCa) primarily based on androgen deprivation therapy (ADT); however, patients inevitably progress to the castration-resistant prostate cancer (CRPC) stage. Despite the recent advancements in CRPC treatment with novel endocrine drugs that further inhibit androgen receptor signaling, resistance ultimately develops, underscoring the urgent need for new effective therapeutic strategies. Therapeutic cancer vaccines, a form of immunotherapy, exert anti-cancer effects by activating the host's immune system. Over the past few decades, various conventional therapeutic PCa vaccines based on cells, microbes, proteins, peptides, or DNA have been developed and tested in patients with advanced PCa. These attempts have largely failed to improve survival, with the sole exception of sipuleucel-T, which extended the median overall survival of asymptomatic or minimally symptomatic metastatic CRPC (mCRPC) patients by four months. The rapid development and high efficacy of mRNA vaccines during the COVID-19 pandemic have garnered worldwide attention. Compared to conventional vaccines, mRNA vaccines offer several unique advantages, including high production efficiency, low cost, high safety, strong immune response induction, and high adaptability and precision. These attributes make mRNA vaccines a promising frontier in the treatment of advanced PCa.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China.
| |
Collapse
|
2
|
Chen W, Wu S, Chen Y, Li W, Cao Y, Liang Y, Dai X, Chen X, Chen Y, Chen T, Liu S, Yang C, Jiang H. USP20 mediates malignant phenotypic changes in bladder cancer through direct interactions with YAP1. Neoplasia 2025; 60:101102. [PMID: 39674114 PMCID: PMC11699748 DOI: 10.1016/j.neo.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Yes-associated protein 1 (YAP1) has attracted attention for its potential in the treatment of various types of malignancies. The Hippo-YAP1 axis is inhibited in bladder cancer (BC), which is a major driver of BC progression and oncogenesis. Hippo pathway activity is controlled by the phosphorylation cascade in the MST1/2-LATS1/2-YAP1 axis, in addition to other modifications such as ubiquitination of the Hippo pathway proteins through the co-regulation of E3 ligases and deubiquitinases. In this study, we identified USP20 as a Hippo/YAP1 pathway-related deubiquitinase using combined siRNA screening and a deubiquitinase overexpression assay. Further analysis revealed that USP20 directly regulated the expression of YAP1 and its downstream target genes connective tissue growth factor and cysteine-rich angiogenic inducer 61. A tissue microarray assay confirmed that USP20 expression was elevated in tumor tissues and correlated with YAP1 expression. Analysis of the underlying mechanisms revealed that USP20 directly interacted with the YAP1 protein and promoted its stability through inhibition of K48-linked poly-ubiquitination. Our findings revealed that USP20 serves as a deubiquitinase and regulates the Hippo-YAP1 pathway in BC.
Collapse
Affiliation(s)
- Wensun Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Siqi Wu
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Yifan Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Weijian Li
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, Fudan University, Shanghai 201203, PR China.
| | - Yingchun Liang
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Xiyu Dai
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Xinan Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Yilin Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Tian Chen
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Shenghua Liu
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Chen Yang
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital Fudan University Shanghai, PR China.
| |
Collapse
|
3
|
Jiao J, Yin M, Wang Z, Hu B, Chi J, Lu L, Dai F, Xue L, Wang T, Wang X, Zhao J, Zhao L, Chen Q. An oriented self-assembly biosensor with built-in error-checking for precise midkine detection in cancer diagnosis and prognosis evaluation. Biosens Bioelectron 2025; 268:116905. [PMID: 39504885 DOI: 10.1016/j.bios.2024.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis, currently recognized as a multifaceted factor in cancer progression and drug resistance. MDK has demonstrated greater accuracy than existing biomarkers. Serum MDK is a valuable indicator for the non-invasive early detection of tumors. It dynamically changes following surgical tumor excision and prior to recurrence, facilitating prognosis and treatment response evaluation. However, existing methods struggle to achieve the sensitivity required for clinical applications. Herein, we developed a triple-mode biosensor with oriented self-construction and built-in error-checking for rapid, sensitive, and convenient MDK detection. The sensor construction adhered to the principle of achieving oriented and strong covalent connections to ensure high sensitivity. Biosynthesized quantum dots (BQDs) were introduced to orient antibodies, enhancing the exploration of active binding sites and significantly increasing antibody-capturing ability. To further enhance sensitivity and signal amplification, Au@Pt nanorods-Ab2 (MF-Probe) were used as multifunctional probes, incorporating an error-checking mechanism to minimize false results. Detection was feasible using an electrochemical workstation, a microplate reader, and even a mobile phone. The sensor exhibited a wide linear range from 5 fg/mL to 100 ng/mL and a low limit of detection (LOD) of 1.620 fg/mL. It accurately distinguished MDK levels in the serum of healthy donors and cancer patients. Compared to existing ELISA kits, it exhibited a lower LOD and a more sensitive response to trace MDK, suggesting it is a promising tool for cancer diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Jiao
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China.
| | - Mengai Yin
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Zhijie Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Bingxin Hu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Jiadong Chi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute & Hospital, Huan Hu Xi Road, He Xi District, Tianjin, 300060, China
| | - Lina Lu
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Fuju Dai
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Lan Xue
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Tong Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Xiangrui Wang
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China
| | - Jie Zhao
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Li Zhao
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300070, China.
| | - Qiang Chen
- The Key Laboratory of Bioactive Materials Ministry of Education, College of Life Science, Nankai University, Weijin Road No.94, Tianjin, 300071, China.
| |
Collapse
|
4
|
Mamdouh S, Mohamed Khorshed FELZ, Hammad G, Magdy M, Abdelraouf A, Hemida E, Shemis M. RNA Interference based Midkine Gene Therapy for Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2024; 25:2371-2379. [PMID: 39068570 PMCID: PMC11480621 DOI: 10.31557/apjcp.2024.25.7.2371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) arises from hepatocytes and accounts for 90% of primary liver cancer. Reasons for HCC prognosis remaining dismal are that HCC is asymptomatic in its early stages, leading to late diagnosis, and it is markedly resistant to conventional chemo- and radiotherapy. In this study, we investigated RNA interference (RNAi)-based treatment for HCC by targeting MDK. AIM The present study aimed to evaluate MDK serum levels as a diagnostic biomarker for HCC detection and the effect of MDK silencing by RNAi on HCC. SUBJECTS AND METHODS A total of 140 participants, including 120 patients diagnosed with HCC and 20 healthy volunteers were enrolled in this study, all patients who underwent liver resection were sampled for tumor and adjacent non-tumor liver tissues, in addition to 5 ml of blood sample. Midkine expression levels were evaluated by ELISA and by qRT-PCR. The in vitro transfection and gene knockdown efficiency of midkine by MDK-siRNA was detected by qRT-PCR and ELISA. Gene knockdown effect at the molecule level on the proliferation of HepG2 in vitro was determined by cell counting. RESULTS The results showed that the expression of MDK was significantly increased in the serum of HCC patients compared to control serum samples with P<0.001 and significant elevated expression levels of MDK in tumor tissues compared to non-tumor ones with P<0.001. It also showed that down-regulation of MDK using RNAi can significantly inhibit HepG2 cells. CONCLUSION Molecular targeting of MDK using RNAi interference decreases proliferation and could be a therapeutic target.
Collapse
Affiliation(s)
- Samah Mamdouh
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
| | | | - Gehan Hammad
- Faculty of Biotechnology, October University for Modern Sciences & Arts (MSA), Giza, Egypt.
| | - Mona Magdy
- Department of Pathology, Theodor Bilharz Research Institute, Cairo, Egypt.
| | - Amr Abdelraouf
- Department of Hepatobiliopancreatic Surgery, National Hepatology and Tropical Medicine Research Institute, (NHTMRI), Cairo, Egypt.
| | - Eman Hemida
- Fellow of Biochemistry, Obstetrics and Gynecology Hospital, Ain Shams University, Cairo, Egypt.
| | - Mohamed Shemis
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
| |
Collapse
|
5
|
Christou C, Stylianou A, Gkretsi V. Midkine (MDK) in Hepatocellular Carcinoma: More than a Biomarker. Cells 2024; 13:136. [PMID: 38247828 PMCID: PMC10814326 DOI: 10.3390/cells13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Midkine (MDK) is a multifunctional secreted protein that can act as a cytokine or growth factor regulating multiple signaling pathways and being implicated in fundamental cellular processes, such as survival, proliferation, and migration. Although its expression in normal adult tissues is barely detectable, MDK serum levels are found to be elevated in several types of cancer, including hepatocellular carcinoma (HCC). In this review, we summarize the findings of recent studies on the role of MDK in HCC diagnosis and progression. Overall, studies show that MDK is a powerful biomarker for HCC early diagnosis, as it can differentiate not only between HCC patients and normal individuals but also between HCC patients and patients with other liver pathologies. It is correlated with high recurrence rates and was shown to be valuable for the diagnosis of early-stage HCC, even in patients negative for α-fetoprotein (AFP), the most commonly used biomarker for HCC diagnosis. A comparison with AFP reveals that MDK is inferior to AFP with regard to specificity but significantly superior with regard to sensitivity, which further indicates the need for using both biomarkers for more effective HCC diagnosis.
Collapse
Affiliation(s)
- Christiana Christou
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus;
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Andreas Stylianou
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Cancer Mechanobiology and Applied Biophysics Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia 2404, Cyprus;
- European University Cyprus Research Centre Ltd., Nicosia 2404, Cyprus;
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| |
Collapse
|
6
|
Yang C, Ou Y, Zhou Q, Liang Y, Li W, Chen Y, Chen W, Wu S, Chen Y, Dai X, Chen X, Chen T, Jin S, Liu Y, Zhang L, Liu S, Hu Y, Zou L, Mao S, Jiang H. Methionine orchestrates the metabolism vulnerability in cisplatin resistant bladder cancer microenvironment. Cell Death Dis 2023; 14:525. [PMID: 37582769 PMCID: PMC10427658 DOI: 10.1038/s41419-023-06050-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Metabolism vulnerability of cisplatin resistance in BCa cells remains to be discovered, which we applied integrated multi-omics analysis to elucidate the metabolism related regulation mechanism in bladder cancer (BCa) microenvironment. Integrated multi-omics analysis of metabolomics and proteomics revealed that MAT2A regulated methionine metabolism contributes to cisplatin resistance in BCa cells. We further validated MAT2A and cancer stem cell markers were up-regulated and circARHGAP10 was down-regulated through the regulation of MAT2A protein stability in cisplatin resistant BCa cells. circARHGAP10 formed a complex with MAT2A and TRIM25 to accelerate the degradation of MAT2A through ubiquitin-proteasome pathway. Knockdown of MAT2A through overexpression of circARHGAP10 and restriction of methionine up-take was sufficient to overcome cisplatin resistance in vivo in immuno-deficiency model but not in immuno-competent model. Tumor-infiltrating CD8+ T cells characterized an exhausted phenotype in tumors with low methionine. High expression of SLC7A6 in BCa negatively correlated with expression of CD8. Synergistic inhibition of MAT2A and SLC7A6 could overcome cisplatin resistance in immuno-competent model in vivo. Cisplatin resistant BCa cells rely on methionine for survival and stem cell renewal. circARHGAP10/TRIM25/MAT2A regulation pathway plays an important role in cisplatin resistant BCa cells while circARHGAP10 and SLC7A6 should be evaluated as one of the therapeutic target of cisplatin resistant BCa.
Collapse
Affiliation(s)
- Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Tian Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Limin Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Intistute of Urology, Huashan hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Saikia M, Cheung N, Singh AK, Kapoor V. Role of Midkine in Cancer Drug Resistance: Regulators of Its Expression and Its Molecular Targeting. Int J Mol Sci 2023; 24:8739. [PMID: 37240085 PMCID: PMC10218550 DOI: 10.3390/ijms24108739] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Molecules involved in drug resistance can be targeted for better therapeutic efficacies. Research on midkine (MDK) has escalated in the last few decades, which affirms a positive correlation between disease progression and MDK expression in most cancers and indicates its association with multi-drug resistance in cancer. MDK, a secretory cytokine found in blood, can be exploited as a potent biomarker for the non-invasive detection of drug resistance expressed in various cancers and, thereby, can be targeted. We summarize the current information on the involvement of MDK in drug resistance, and transcriptional regulators of its expression and highlight its potential as a cancer therapeutic target.
Collapse
Affiliation(s)
- Minakshi Saikia
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
| | - Nathan Cheung
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
| | - Abhay Kumar Singh
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63108, USA; (M.S.); (N.C.); (A.K.S.)
- Siteman Cancer Center, St. Louis, MO 63108, USA
| |
Collapse
|
8
|
Mou Z, Chen Y, Zhang Z, Chen X, Hu Y, Zou L, Xu C, Jiang H. Cryoablation inhibits the recurrence and progression of bladder cancer by enhancing tumour-specific immunity. Clin Transl Med 2023; 13:e1255. [PMID: 37157934 PMCID: PMC10167412 DOI: 10.1002/ctm2.1255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/12/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Recurrence and metastasis of bladder cancer are major factors affecting patient prognosis. Endoscopic cryoablation achieved a better clinical outcome among clinical patients and could be synergistic with ICIs. Thus, this study aimed to evaluate the immunological mechanism of cryoablation for bladder cancer to reveal the therapeutic mechanism. METHODS We systematically reviewed the clinical prognosis of patients underwent cryoablation at Huashan Hospital in these first-in-human studies (ChiCTR-INR-17013060). Murine models were constructed to explore cryoablation-induced tumour-specific immunity, which was further confirmed by primary bladder tumour organoids and autologous lymphocytes cocultured system. RESULTS Cryoablation improved progression-free survival and recurrence-free survival respectively. Assessment of murine models after cryoablation confirmed microenvironment remodelling and tumour-specific T cells expansion. Enhanced antitumour effects were found after coculture of organoids with autologous lymphocytes collected from post-cryoablation. We also demonstrated cryoablation-induced tumour elimination required IFNGR expression on tumour cells. In addition, a long-lasting antitumour memory response is achieved by cryoablation and could be enhanced after combination with ICIs. CONCLUSIONS This study revealed endoscopic cryoablation is an efficient and safe therapy for bladder tumour treatment. The tumour-specific immune responses induced by cryoablation could reduce tumour recurrence and metastasis.
Collapse
Affiliation(s)
- Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| |
Collapse
|