1
|
Xi Y, Huang Y, Hu J, Wang Y, Qian Q, Tu L, Nie H, Zhu J, Ding C, Gao X, Zheng X, Huang D, Cheng L. EIF2B5 promotes malignant progression of hepatocellular carcinoma by activating the PI3K/AKT signaling pathway through targeting RPL6. Cell Signal 2025; 132:111821. [PMID: 40246131 DOI: 10.1016/j.cellsig.2025.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with limited treatment options and poor prognosis. In this study, we demonstrated the critical role of EIF2B5 in driving HCC progression. We found EIF2B5 expression is significantly upregulated in HCC tumor tissues in several bioinformatics datasets, including The Cancer Genome Atlas, and that high expression of EIF2B5 predicts poor prognosis for HCC patients. Through a series of in vitro cell biology experiments, we found that EIF2B5 knockdown significantly attenuated Hep3B and HepG2 proliferation, migration, and invasion and increased cell cycle arrest, whereas EIF2B5 overexpression promoted HCC progression. Through mass spectrometry and immunoprecipitation validation, we found that EIF2B5 directly interacted with RPL6 and that when EIF2B5 was overexpressed in HCC cells, it promoted the expression of the downstream protein RPL6, which was able to activate the phosphatidylinositol kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) pathway and thereby increase the proliferation and invasion ability of HCC cell lines, as verified by second-generation sequencing analysis and western blot. We further verified these findings using the mouse ectopic tumor assay, and the results showed that EIF2B5 knockdown significantly inhibited tumor progression in HCC mice. The present study suggests that EIF2B5 promotes malignant progression of HCC by interacting with RPL6 and activating the PI3K/AKT/mTOR signaling pathway and may serve as a potential target for the treatment of HCC.
Collapse
Affiliation(s)
- Yiling Xi
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yue Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiahui Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Wang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiyi Qian
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linglan Tu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huizong Nie
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiayao Zhu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenguang Ding
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaotao Gao
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoliang Zheng
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liyan Cheng
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Lei Z, Luo Y, Fu Q, Lu J, Wang C, Zhang L, Zhang Z. Ribosomal protein L6 suppresses hepatocellular carcinoma by modulating FBXO22-mediated p53 degradation. Cell Signal 2025; 127:111612. [PMID: 39842528 DOI: 10.1016/j.cellsig.2025.111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The ribosomal protein L6 (RPL6) is significant in the progression of different cancer types. However, its precise role in hepatocellular carcinoma (HCC) remains unclear. This research demonstrated that the expression levels of RPL6 are notably decreased in HCC tissues. The decreased expression of RPL6 is strongly linked to tumor size, the presence of vascular invasion, and a worse prognosis. Functional experiments revealed that the expression of RPL6 impedes the proliferation of HCC cells and the advancement of xenograft tumors. Mechanistically, we found that RPL6 binds to and is degraded by the E3 ubiquitin ligase FBXO22, thereby inhibiting the polyubiquitination and subsequent degradation of p53 by FBXO22. The enhanced activity of p53 further contributes to cell growth inhibition. In contrast, the levels of p53 decreased significantly following RPL6 depletion, indicating that RPL6 is essential for the stabilization of p53. In summary, RPL6 inhibits the proliferation of HCC cells via the FBXO22/p53 signaling pathway, suggesting its potential as a biomarker and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhen Lei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang 832008, PR China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Junli Lu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Chao Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China
| | - Long Zhang
- Department of Hepatopancreatobiliary Surgery, Ganzhou People's Hospital of Jiangxi Province (Ganzhou Hospital Afffliated to Nanchang University), Ganzhou 341000, PR China.
| | - Zhiwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
3
|
Liu B, Liu R, Zhang X, Tian L, Li Z, Yu J. Ubiquitin-conjugating enzyme E2T confers chemoresistance of colorectal cancer by enhancing the signal propagation of Wnt/β-catenin pathway in an ERK-dependent manner. Chem Biol Interact 2025; 406:111347. [PMID: 39667421 DOI: 10.1016/j.cbi.2024.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy is a major therapeutic option for colorectal cancer; however, the frequently acquired chemoresistance greatly limits the treatment efficacy of chemotherapeutic agents. Ubiquitin-conjugating enzyme E2T (UBE2T) is emerging as a key player in the development of therapy resistance. However, whether UBE2T participates in the acquisition of chemoresistance in colorectal cancer remains undetermined. The present work aimed to specify the role of UBE2T in the development of chemoresistance in colorectal cancer and decipher any potential underlying mechanisms. Significant up-regulation of UBE2T was observed in the clinical specimens of chemoresistant colorectal cancer patients compared with chemosensitive patients. Compared with parental cells, the levels of UBE2T were also dramatically elevated in oxaliplatin (OXA)- and 5-fluorouracil (5-FU)-resistant colorectal cancer cells. Knockout of UBE2T rendered OXA- and 5-FU-resistant cells sensitive to OXA and 5-FU, respectively. Re-expression of UBE2T restored the chemoresistance of UBE2T-knockout OXA- and 5-FU-resistant cells. Mechanistically, phosphorylated GSK-3β, active β-catenin, c-myc and cyclin D1 levels were decreased in UBE2T-knockout OXA- and 5-FU-resistant cells, which were reversed by the re-expression of UBE2T. Moreover, knockout of UBE2T reduced the activation of ERK. The inhibition of ERK reversed the promotion effect of UBE2T on Wnt/β-catenin pathway. In vivo xenograft experiments demonstrated that knockout of UBE2T rendered the subcutaneous tumors formed by OXA-resistant cells sensitive to OXA. To conclude, UBE2T confers chemoresistance of colorectal cancer by boosting the signal propagation of the Wnt/β-catenin pathway in an ERK-dependent manner. Therefore, UBE2T could be a potential target for overcoming chemoresistance in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ultrasound, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Ruiting Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China.
| | - Xiaolong Zhang
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Lifei Tian
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Zeyu Li
- Department of General Surgery, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Jiao Yu
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| |
Collapse
|
4
|
Gao C, Liu YJ, Yu J, Wang R, Shi JJ, Chen RY, Yang GJ, Chen J. Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review. Cells 2024; 14:15. [PMID: 39791716 PMCID: PMC11719737 DOI: 10.3390/cells14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways. High levels of UBE2T expression are associated with poor survival outcomes, highlighting its potential as a molecular biomarker for cancer prognosis. Increasing evidence suggests that UBE2T acts as an oncogene and could serve as a promising therapeutic target in cancer treatment. This review aims to provide a detailed overview of UBE2T's structure, functions, and molecular mechanisms involved in cancer progression as well as recent developments in UBE2T-targeted inhibitors. Such insights may pave the way for novel strategies in cancer diagnosis and treatment, enhancing our understanding of UBE2T's role in cancer biology and supporting the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Deng Y, Chen X, Chen X, Huang C, Zhang Z, Xu Z, Wang X, Wu J, Li L, Song J, Zhou R. UBE2T promotes stage I lung adenocarcinoma progression through PBX1 ubiquitination and PBX1/RORA regulation. BMC Cancer 2024; 24:1158. [PMID: 39289660 PMCID: PMC11409575 DOI: 10.1186/s12885-024-12887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Post-translational modification pathway of protein ubiquitination is intricately associated with tumorigenesis. We previously reported elevated ubiquitin-conjugating enzyme 2T (UBE2T) as an independent risk factor in stage I lung adenocarcinoma and promoting cellular proliferation. However, its underlying mechanisms needed further investigation. METHODS Immunohistochemistry was used to assess the expression of UBE2T and retinoic acid receptor-related orphan receptor α (RORA) in stage I LUAD. Cell proliferation, migration, and invasion of LUAD cell lines were measured by Cell Counting Kit-8 assay (CCK-8), Colony-forming assay and Transwell assay, respectively. Western blot analysis was performed to determine the expression of epithelial-mesenchymal transition (EMT) markers. A xenograft model was established to evaluate the proliferative capacity of UBE2T and its interaction with RORA in promoting LUAD. Mechanistic insights into the promotion of early-stage LUAD by UBE2T were obtained through luciferase reporter assay, chromatin immunoprecipitation and co-immunoprecipitation. RESULTS UBE2T and RORA expression was significantly up- and down-regulated in early-stage LUAD patients which's proved to be associated with unfavorable outcomes, strengthened cell proliferation, migration, EMT and invasion through its interaction with RORA both in vivo and in vitro. The growth NSCLC xenografts was reduced by down-expression of UBE2T but was suppressed by RORA knockout. Mechanistically, UBE2T mediated the ubiquitination of the intermediate transcription factor PBX1, which played a transcriptional role in downstream regulation of RORA. CONCLUSION The oncogenic role of UBE2T and the UBE2T-PBX1-RORA axis in driving malignant progression in Stage I LUAD had been established. UBE2T might be a novel and promising therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, , Fuzhou, Fujian Province, 350005, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Xuzheng Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd. Jin'an District, Fuzhou, Fujian Province, 350014, China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Zhenguo Xu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Xiurong Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Jiamin Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Li Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China.
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
6
|
Loh YY, Anantharajan J, Huang Q, Xu W, Fulwood J, Ng HQ, Ng EY, Gea CY, Choong ML, Tan QW, Koh X, Lim WH, Nacro K, Cherian J, Baburajendran N, Ke Z, Kang C. Identification of small-molecule binding sites of a ubiquitin-conjugating enzyme-UBE2T through fragment-based screening. Protein Sci 2024; 33:e4904. [PMID: 38358126 PMCID: PMC10868430 DOI: 10.1002/pro.4904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using 19 F-nuclear magnetic resonance (NMR) and validated the hits with 1 H-15 N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies. The cocrystal structures obtained revealed the binding modes of the hit fragments and allowed for the characterization of the fragment-binding sites. Further screening of structural analogues resulted in the identification of a compound series with inhibitory effect on UBE2T activity. Our current study has identified two new binding pockets in UBE2T, which will be useful for the development of small molecules to regulate the function of this protein. In addition, the compounds identified in this study can serve as chemical starting points for the development of UBE2T modulators.
Collapse
Affiliation(s)
- Yong Yao Loh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Chong Yu Gea
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Meng Ling Choong
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
7
|
Zhu Y, Liang L, Zhao Y, Li J, Zeng J, Yuan Y, Li N, Wu L. CircNUP50 is a novel therapeutic target that promotes cisplatin resistance in ovarian cancer by modulating p53 ubiquitination. J Nanobiotechnology 2024; 22:35. [PMID: 38243224 PMCID: PMC10799427 DOI: 10.1186/s12951-024-02295-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Most patients with ovarian cancer (OC) treated with platinum-based chemotherapy have a dismal prognosis owing to drug resistance. However, the regulatory mechanisms of circular RNA (circRNA) and p53 ubiquitination are unknown in platinum-resistant OC. We aimed to identify circRNAs associated with platinum-resistant OC to develop a novel treatment strategy. METHODS Platinum-resistant circRNAs were screened through circRNA sequencing and validated using quantitative reverse-transcription PCR in OC cells and tissues. The characteristics of circNUP50 were analysed using Sanger sequencing, oligo (dT) primers, ribonuclease R and fluorescence in situ hybridisation assays. Functional experimental studies were performed in vitro and in vivo. The mechanism underlying circNUP50-mediated P53 ubiquitination was investigated through circRNA pull-down analysis and mass spectrometry, luciferase reporters, RNA binding protein immunoprecipitation, immunofluorescence assays, cycloheximide chase assays, and ubiquitination experiments. Finally, a platinum and si-circNUP50 co-delivery nanosystem (Psc@DPP) was constructed to treat platinum-resistant OC in an orthotopic animal model. RESULTS We found that circNUP50 contributes to platinum-resistant conditions in OC by promoting cell proliferation, affecting the cell cycle, and reducing apoptosis. The si-circNUP50 mRNA sequencing and circRNA pull-down analysis showed that circNUP50 mediates platinum resistance in OC by binding p53 and UBE2T, accelerating p53 ubiquitination. By contrast, miRNA sequencing and circRNA pull-down experiments indicated that circNUP50 could serve as a sponge for miR-197-3p, thereby upregulating G3BP1 to mediate p53 ubiquitination, promoting OC platinum resistance. Psc@DPP effectively overcame platinum resistance in an OC tumour model and provided a novel idea for treating platinum-resistant OC using si-circNUP50. CONCLUSIONS This study reveals a novel molecular mechanism by which circNUP50 mediates platinum resistance in OC by modulating p53 ubiquitination and provides new insights for developing effective therapeutic strategies for platinum resistance in OC.
Collapse
Affiliation(s)
- Yunshu Zhu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Leilei Liang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yuxi Zhao
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia Zeng
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yihang Yuan
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| | - Ning Li
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Lingying Wu
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Huang Q, Ng HQ, Loh YY, Ke Z, Lim WH, Kang C. Backbone 1H, 15N and 13C resonance assignments for an E2 ubiquitin conjugating enzyme-UBE2T. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:269-274. [PMID: 37773242 DOI: 10.1007/s12104-023-10154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) plays important roles in ubiquitination of proteins through participation in transferring ubiquitin to its substrate. Due to its importance in protein modifications, UBE2T associates with diverse diseases and serves as an important target for drug discovery and development. The crystal structure of UBE2T has been determined and the structure reveals the lack of a druggable pocket for binding to small molecules for clinical applications. Despite the challenge, effort has been made to develop UBE2T inhibitors. We obtained UBE2T constructs with and without the C-terminal region which is flexible in solution. Herein, we report the backbone resonance assignments for human UBE2T without the C-terminal region. The backbone dynamics of UBE2T was also explored. The available assignments will be helpful for hit identification, determining ligand binding site and understanding the mechanism of action of UBE2T inhibitors.
Collapse
Affiliation(s)
- Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Yong Yao Loh
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore.
| |
Collapse
|
9
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
10
|
Wang Y, Gao G, Wei X, Zhang Y, Yu J. UBE2T Promotes Temozolomide Resistance of Glioblastoma Through Regulating the Wnt/β-Catenin Signaling Pathway. Drug Des Devel Ther 2023; 17:1357-1369. [PMID: 37181827 PMCID: PMC10168001 DOI: 10.2147/dddt.s405450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose Patients with glioblastoma (GBM) have poor prognosis and limited therapeutic options, largely because of chemoresistance to temozolomide (TMZ) treatment. Ubiquitin conjugating enzyme E2 T (UBE2T) plays a key role in regulating the malignancy of various tumors, including GBM; however, its role in TMZ resistance of GBM has not been elucidated. The purpose of this study was to clarify the role of UBE2T in mediating TMZ resistance and investigate the specific underlying mechanism. Methods Western blotting was used to detect the protein levels of UBE2T and Wnt/β-catenin-related factors. CCK-8, flow cytometry, and colony formation assays were used to examine the effect of UBE2T on TMZ resistance. Wnt/β-catenin signaling pathway activation was inhibited using XAV-939, and a xenograft mouse model was generated to clarify the function of TMZ in vivo. Results UBE2T knockdown sensitized GBM cells to TMZ treatment, whereas UBE2T overexpression promoted TMZ resistance. The specific UBE2T inhibitor, M435-1279, increased the sensitivity of GBM cells to TMZ. Mechanistically, our results demonstrated that UBE2T induces β-catenin nuclear translocation and increases the protein levels of downstream molecules, including survivin and c-Myc. Inhibition of Wnt/β-catenin signaling using XAV-939 blocked TMZ resistance due to UBE2T overexpression in GBM cells. In addition, UBE2T was shown to facilitate TMZ resistance by inducing Wnt/β-catenin signaling pathway activation in a mouse xenograft model. Combined treatment with TMZ and UBE2T inhibitor achieved superior tumor growth suppression relative to TMZ treatment alone. Conclusion Our data reveal a novel role of UBE2T in mediating TMZ resistance of GBM cells via regulating Wnt/β-catenin signaling. These findings indicate that targeting UBE2T has promising potential to overcome TMZ resistance of GBM.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xiangpin Wei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
11
|
Cao K, Ling X, Jiang X, Ma J, Zhu J. Pan-cancer analysis of UBE2T with a focus on prognostic and immunological roles in lung adenocarcinoma. Respir Res 2022; 23:306. [DOI: 10.1186/s12931-022-02226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a potential oncogene. However, Pan-cancer analyses of the functional, prognostic and predictive implications of this gene are lacking.
Methods
We first analyzed UBE2T across 33 tumor types in The Cancer Genome Atlas (TCGA) project. We investigated the expression level of UBE2T and its effect on prognosis using the TCGA database. The correlation between UBE2T and cell cycle in pan-cancer was investigated using the single-cell sequencing data in Cancer Single-cell State Atlas (CancerSEA) database. The Weighted Gene Co-expression Network analysis (WGCNA), Univariate Cox and Least absolute shrinkage and selection operator (LASSO) Cox regression models, and receiver operating characteristic (ROC) were applied to assess the prognostic impact of UBE2T-related cell cycle genes (UrCCGs). Furthermore, the consensus clustering (CC) method was adopted to divide TCGA-lung adenocarcinoma (LUAD) patients into subgroups based on UrCCGs. Prognosis, molecular characteristics, and the immune panorama of subgroups were analyzed using Single-sample Gene Set Enrichment Analysis (ssGSEA). Results derived from TCGA-LUAD patients were validated in International Cancer Genome Consortium (ICGC)-LUAD data.
Results
UBE2T is highly expressed and is a prognostic risk factor in most tumors. CancerSEA database analysis revealed that UBE2T was positively associated with the cell cycle in various cancers(r > 0.60, p < 0.001). The risk signature of UrCCGs can reliably predict the prognosis of LUAD (AUC1 year = 0.720, AUC3 year = 0.700, AUC5 year = 0.630). The CC method classified the TCGA-LUAD cohort into 4 UrCCG subtypes (G1–G4). Kaplan–Meier survival analysis demonstrated that G2 and G4 subtypes had worse survival than G3 (Log-rank test PTCGA training set < 0.001, PICGC validation set < 0.001). A comprehensive analysis of immune infiltrates, immune checkpoints, and immunogenic cell death modulators unveiled different immune landscapes for the four subtypes. High immunophenoscore in G3 and G4 tumors suggested that these two subtypes were immunologically “hot,” tending to respond to immunotherapy compared to G2 subtypes (p < 0.001).
Conclusions
UBE2T is a critical oncogene in many cancers. Moreover, UrCCG classified the LUAD cohort into four subgroups with significantly different survival, molecular features, immune infiltrates, and immunotherapy responses. UBE2T may be a therapeutic target and predictor of prognosis and immunotherapy sensitivity.
Collapse
|