1
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Disruption of metabolic homeostasis is universal in the critically ill. Macronutrients and micronutrients are major environmental regulators of metabolite production through their gene regulation effects. The study of large numbers of circulating metabolites is beginning to emerge through the comprehensive profiling of the critically ill. In the critically ill, metabolomic studies consistently show that changes in fatty acids, lipids and tryptophan metabolite pathways are common and are associated with disease state and outcomes. RECENT FINDINGS Metabolomics is now being applied in research studies to determine the critical illness response to nutrient deficiency and delivery. Nutritional metabolomics approaches in nutrient deficiency, malnutrition and nutrient delivery have included single time point studies and dynamic studies of critically ill patients over time. Integration of metabolomics and clinical outcome data may create a more complete understanding of the control of metabolism in critical illness. SUMMARY The integration of metabolomic profiling with transcription and genomic data may allow for a unique window into the mechanism of how nutrient deficiency and delivery alters cellular homeostasis during critical illness and modulates the regain of cellular homeostasis during recovery. The progress and the challenges of the study of nutritional metabolomics are reviewed here.
Collapse
Affiliation(s)
- Kenneth B Christopher
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Morais M, Ferreira VFC, Figueira F, Mendes F, Raposinho P, Santos I, Oliveira BL, Correia JDG. Technetium-99m complexes of l-arginine derivatives for targeting amino acid transporters. Dalton Trans 2017; 46:14537-14547. [PMID: 28612866 DOI: 10.1039/c7dt01146f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although relevant from the clinical point of view, radiotracers targeting cationic amino acid transporters are relatively unexplored and, in particular, no metal-based radiotracers are known. The rare examples of complexes recognized by amino acid transporters, namely by the Na+-independent neutral l-type amino acid transporter 1 (LAT1), are 99mTc(i)/Re(i) compounds. Herein, we describe conjugates comprising a pyrazolyl-diamine chelating unit and the cationic amino acid l-arginine (l-Arg) linked by a propyl (L1) or hexyl linker (L2), which allowed the preparation of stable complexes of the type fac-[99mTc(CO)3(k3-L)]+ (Tc1, L = L1; Tc2, L = L2) and of the respective surrogates Re1 and Re2. Interestingly, complex Tc2 exhibited moderate levels of time-dependent internalization in three human tumoural cell lines, with approximately 3% of total applied activity internalized, corresponding to 21% of the cell-associated activity. A putative mechanism of retention in the cytoplasm of cells could be the interaction of the complex with inducible nitric oxide synthase (iNOS), which is the enzyme responsible for the catalytic oxidation of l-Arg to citrulline and nitric oxide. However, the surrogate complex Re2 does not recognize iNOS, as demonstrated by the in vitro assays with purified iNOS and in studies with lipopolysaccharide(LPS)-activated macrophages. Preliminary mechanistic studies suggest that the internalization of Tc2 is linked to the cationic amino acid transporters, namely system y+. This finding might open the way towards the development of novel families of metal-based radiotracers for probing metabolically active cancer cells.
Collapse
Affiliation(s)
- Maurício Morais
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Silva F, Fernandes C, Campello MPC, Paulo A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Mizuno Y, Uehara T, Hanaoka H, Endo Y, Jen CW, Arano Y. Purification-Free Method for Preparing Technetium-99m-Labeled Multivalent Probes for Enhanced in Vivo Imaging of Saturable Systems. J Med Chem 2016; 59:3331-9. [PMID: 26999587 DOI: 10.1021/acs.jmedchem.6b00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metallic radionuclides provide target-specific radiolabeled probes for molecular imaging in radiochemical yields sufficient for administration to subjects without purification. However, unlabeled ligands in the injectate can compete for targeted molecules with radiolabeled probes, which eventually necessitates postlabeling purification. Herein we describe a "1 to 3" design to circumvent the issue by taking advantage of inherent coordination properties of technetium-99m ((99m)Tc). A monovalent RGD ligand possessing an isonitrile as a coordinating moiety (CN-RGD) was reacted with [(99m)Tc(CO)3(OH2)3](+) to prepare [(99m)Tc(CO)3(CN-RGD)3](+) in over 95% radiochemical yields. This complex exhibited higher integrin αvβ3 binding affinity than its unlabeled monovalent ligand, primarily due to its multivalency. This compound visualized a murine tumor without removing unlabeled ligands, while a (99m)Tc-labeled monovalent probe derived from a monovalent ligand could not. The metal coordination-mediated synthesis of radiolabeled multivalent probes thereby can be a useful approach for preparing ready-to-use target-specific probes labeled with (99m)Tc and other metallic radionuclides of interest.
Collapse
Affiliation(s)
- Yuki Mizuno
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Tomoya Uehara
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Hirofumi Hanaoka
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Yota Endo
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Chun-Wei Jen
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| |
Collapse
|
7
|
Rajaratnam R, Martin EK, Dörr M, Harms K, Casini A, Meggers E. Correlation between the Stereochemistry and Bioactivity in Octahedral Rhodium Prolinato Complexes. Inorg Chem 2015; 54:8111-20. [DOI: 10.1021/acs.inorgchem.5b01349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rajathees Rajaratnam
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Elisabeth K. Martin
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Markus Dörr
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology
and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
- Cardiff School
of Chemistry, University of Cardiff, Park Place, Cardiff CF10 3A, U.K
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse
4, 35043 Marburg, Germany
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|