1
|
Wang XR, Zhang JT, Guo XH, Li MH, Jing WG, Cheng XL, Wei F. Digital identification of Aucklandiae radix, Vladimiriae radix, and Inulae radix based on multivariate algorithms and UHPLC-QTOF-MS analysis. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:92-100. [PMID: 39072803 DOI: 10.1002/pca.3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The identification of Aucklandiae Radix (AR), Vladimiriae Radix (VR), and Inulae Radix (IR) based on traits and microscopic features is susceptible to the state of samples and the subjective awareness of personnel, and the identification based on a few or single chemical compositions is a cumbersome and time-consuming procedure and fails to rationally and effectively utilize the information of unknown components and is not specificity enough. OBJECTIVES This study aimed to improve the identification efficiency, strengthen supervision, and realize digital identification of three Chinese medicines. Ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) combined with multivariate algorithms was used to explore the digital identification of AR, VR, and IR. MATERIALS AND METHODS UHPLC-QTOF-MS was used to analyze AR, VR, and IR. The MS data combined with multivariate algorithms such as partial least squares discrimination analysis (PLS-DA) and artificial neural networks (ANNs) was used to filter important variables and data modeling. Finally, the optimal model was selected for the digital identification of three herbs. RESULTS The results showed that three herbs can be distinguished on the whole level, and through feature screening, 591 characteristic variables combined with multivariate algorithms to construct data models. The ANN model was the best with accuracy = 0.983, precision = 0.984, and external verification showed the reliability and practicability of ANN model. CONCLUSION ANN model combined with MS data is of great significance for tdigital identification of AR, VR, and IR. It is an important reference for developing the digital identification of traditional Chinese medicines at the individual level based on UHPLC-QTOF-MS and multivariate algorithms.
Collapse
Affiliation(s)
- Xian Rui Wang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Ting Zhang
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiao Han Guo
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Ming Hua Li
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Wen Guang Jing
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xian Long Cheng
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Feng Wei
- Institute for Control of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
2
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. J Biomol Struct Dyn 2024; 42:819-833. [PMID: 37042955 DOI: 10.1080/07391102.2023.2196347] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
A complete investigation to understand the pathways that could be affected by glycyrrhizin (licorice), as anti-breast cancer (BC) agent, has not been performed to date. This study aims to investigate the pathways involved in the anti-cancer activity of glycyrrhizin against BC. For this purpose, the target genes of glycyrrhizin were obtained from the ChEMBL database. The BC-associated genes for three types of BC (breast carcinoma, malignant neoplasm of breast, and triple-negative breast neoplasms) were retrieved from DisGeNET. The target genes of glycyrrhizin and the BC-associated genes were compared, and the genes with disease specificity index (DSI) > 0.6 were selected for further evaluation using in silico methods. The protein-protein interaction (PPI) network was constructed, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. The potential complexes were further evaluated using molecular dynamics (MD) simulation. The results revealed that among 80 common genes, ten genes had DSI greater than 0.6, which included POLK, TACR2, MC3R, TBXAS1, HH1R, SLCO4A1, NPY2R, ADRA2C, ADRA1A, and SLCO2B1. The binding affinity of glycyrrhizin to the cognate proteins and binding characteristics were assessed using molecular docking and binding free energy calculations (MM/GBSA). POLK, TBXAS1, and ADRA1A showed the highest binding affinity with -8.9, -9.3, and -9.6 kcal/mol, respectively. The final targets had an association with BC at several stages of tumor growth. By affecting these targets, glycyrrhizin could influence and control BC efficiently. MD simulation suggested the pathways triggered by the complex glycyrrhizin-ADRA1A were more likely to happen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
He J, Li J, Jiang S, Cheng W, Jiang J, Xu Y, Yang J, Zhou X, Chai C, Wu C. Application of machine learning algorithms in predicting HIV infection among men who have sex with men: Model development and validation. Front Public Health 2022; 10:967681. [PMID: 36091522 PMCID: PMC9452878 DOI: 10.3389/fpubh.2022.967681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023] Open
Abstract
Background Continuously growing of HIV incidence among men who have sex with men (MSM), as well as the low rate of HIV testing of MSM in China, demonstrates a need for innovative strategies to improve the implementation of HIV prevention. The use of machine learning algorithms is an increasing tendency in disease diagnosis prediction. We aimed to develop and validate machine learning models in predicting HIV infection among MSM that can identify individuals at increased risk of HIV acquisition for transmission-reduction interventions. Methods We extracted data from MSM sentinel surveillance in Zhejiang province from 2018 to 2020. Univariate logistic regression was used to select significant variables in 2018-2019 data (P < 0.05). After data processing and feature selection, we divided the model development data into two groups by stratified random sampling: training data (70%) and testing data (30%). The Synthetic Minority Oversampling Technique (SMOTE) was applied to solve the problem of unbalanced data. The evaluation metrics of model performance were comprised of accuracy, precision, recall, F-measure, and the area under the receiver operating characteristic curve (AUC). Then, we explored three commonly-used machine learning algorithms to compare with logistic regression (LR), including decision tree (DT), support vector machines (SVM), and random forest (RF). Finally, the four models were validated prospectively with 2020 data from Zhejiang province. Results A total of 6,346 MSM were included in model development data, 372 of whom were diagnosed with HIV. In feature selection, 12 variables were selected as model predicting indicators. Compared with LR, the algorithms of DT, SVM, and RF improved the classification prediction performance in SMOTE-processed data, with the AUC of 0.778, 0.856, 0.887, and 0.942, respectively. RF was the best-performing algorithm (accuracy = 0.871, precision = 0.960, recall = 0.775, F-measure = 0.858, and AUC = 0.942). And the RF model still performed well on prospective validation (AUC = 0.846). Conclusion Machine learning models are substantially better than conventional LR model and RF should be considered in prediction tools of HIV infection in Chinese MSM. Further studies are needed to optimize and promote these algorithms and evaluate their impact on HIV prevention of MSM.
Collapse
Affiliation(s)
- Jiajin He
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhua Li
- School of Software Technology, Zhejiang University, Ningbo, China
| | - Siqing Jiang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jun Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yun Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiezhe Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xin Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chengliang Chai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Chengliang Chai
| | - Chao Wu
- School of Public Affairs, Zhejiang University, Hangzhou, China,Chao Wu
| |
Collapse
|
4
|
Murali V, Muralidhar YP, Königs C, Nair M, Madhu S, Nedungadi P, Srinivasa G, Athri P. Predicting clinical trial outcomes using drug bioactivities through graph database integration and machine learning. Chem Biol Drug Des 2022; 100:169-184. [PMID: 35587730 DOI: 10.1111/cbdd.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/24/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
The ability to estimate the probability of a drug to receive approval in clinical trials provides natural advantages to optimizing pharmaceutical research workflows. Success rates of clinical trials have deep implications for costs, duration of development, and under pressure due to stringent regulatory approval processes. We propose a machine learning approach that can predict the outcome of the trial with reliable accuracies, using biological activities, physicochemical properties of the compounds, target-related features, and NLP-based compound representation. In the above list, biological activities have never been used as an independent variable towards the prediction of clinical trial outcomes. We have extracted the drug-disease pair from clinical trials and mapped target(s) to that pair using multiple data sources. Empirical results demonstrate that ensemble learning outperforms independently trained, small-data ML models. We report results and inferences derived from a Random forest classifier with an average accuracy of 93%, and an F1 score of 0.96 for the "Pass" class. "Pass" refers to one of the two classes (Pass/Fail) of all clinical trials, and the model performed well in predicting the "Pass" category. Through the analysis of feature contributions to predictive capability, we have demonstrated that bioactivity plays a statistically significant role in predicting clinical trial outcome. A significant effort has gone into the production of the dataset that, for the first time, integrates clinical trial information with protein targets. Cleaned, organized, integrated data and code to map these entities, created as a part of this work, are available open-source. This reproducibility and the freely available code ensure that researchers with access to deep curated and proprietary clinical trial databases (we only use open-source data in this study) can further expand the scope of the results.
Collapse
Affiliation(s)
- Vidhya Murali
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, India
| | - Y Pradyumna Muralidhar
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, Bengaluru, India
| | - Cassandra Königs
- Bioinformatics and Medical Informatics, Bielefeld University, Northrhine-Westphalia, Germany
| | - Meera Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Sethulekshmi Madhu
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Prema Nedungadi
- Department of Computer Science and Engineering, Amrita School of Engineering, Kerala, India
| | - Gowri Srinivasa
- PES Center for Pattern Recognition, Department of Computer Science and Engineering, PES University, Bengaluru, India
| | - Prashanth Athri
- Department of Computer Science and Engineering, Amrita School of Engineering, Bengaluru, India
| |
Collapse
|
5
|
Serafim MSM, Dos Santos Júnior VS, Gertrudes JC, Maltarollo VG, Honorio KM. Machine learning techniques applied to the drug design and discovery of new antivirals: a brief look over the past decade. Expert Opin Drug Discov 2021; 16:961-975. [PMID: 33957833 DOI: 10.1080/17460441.2021.1918098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Drug design and discovery of new antivirals will always be extremely important in medicinal chemistry, taking into account known and new viral diseases that are yet to come. Although machine learning (ML) have shown to improve predictions on the biological potential of chemicals and accelerate the discovery of drugs over the past decade, new methods and their combinations have improved their performance and established promising perspectives regarding ML in the search for new antivirals.Areas covered: The authors consider some interesting areas that deal with different ML techniques applied to antivirals. Recent innovative studies on ML and antivirals were selected and analyzed in detail. Also, the authors provide a brief look at the past to the present to detect advances and bottlenecks in the area.Expert opinion: From classical ML techniques, it was possible to boost the searches for antivirals. However, from the emergence of new algorithms and the improvement in old approaches, promising results will be achieved every day, as we have observed in the case of SARS-CoV-2. Recent experience has shown that it is possible to use ML to discover new antiviral candidates from virtual screening and drug repurposing.
Collapse
Affiliation(s)
- Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Jadson Castro Gertrudes
- Departamento de Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Kathia Maria Honorio
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, Brazil
| |
Collapse
|