1
|
Doghish AS, Zaki MB, Hatawsh A, Elfar N, Alhamshry NAA, Abd-Elmawla MA, Aborehab NM, Radwan AF, Moussa R, Mageed SSA, Abdel-Reheim MA, Mohammed OA, Elimam H. Alternative medicines in oncology: a focus on natural products against gastric cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04058-2. [PMID: 40261350 DOI: 10.1007/s00210-025-04058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
There is justification for optimism about the potential contribution of alternative medicines to cancer management, which now ranks as the second leading cause of death globally. Primary carcinogens arise from several sources, including agriculture, industry, and dietary intake. Gastric cancer (GC) significantly affects an individual's health due to its classification as a malignant tumor associated with elevated mortality and morbidity rates. Chemotherapy is now widely regarded as the gold standard for treating GC. Chemotherapy, however, exerts significant detrimental effects on human health, including irreversible damage to multiple organs. Consequently, it is essential to employ innovative strategies for cancer prevention. Natural products are now the focus of intensive study due to their efficacy against cancer and low toxicity levels. Natural compounds have shown a diverse range of anti-cancer properties. This review aims to emphasize studies on natural compounds that inhibit metastasis, induce apoptosis in GC, and decrease cellular proliferation. All the natural compounds from different sources were incorporated in this review not only medicinal plants derived compounds. This review aims to examine a comprehensive array of natural therapies that may enhance human health and facilitate GC prevention without inducing discernible negative effects. Moreover, this review aims to discuss the toxic side effects of phytochemicals and shed light on mechanisms underlying the action of potential natural products against GC. This review offers a novel perspective by integrating a broad spectrum of natural compounds from diverse sources, not limited to medicinal plants, to explore their anti-cancer properties against gastric cancer.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nourhan Elfar
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, 11578, Egypt
- Egyptian Drug Authority (EDA), Ministry of Health and Population, Cairo, 11567, Egypt
| | - Nora A A Alhamshry
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Abdullah F Radwan
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Rewan Moussa
- Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt.
| |
Collapse
|
2
|
Liu F, Wang M, Li G, Cheng S, Yu J, Luo H, Zhu X. KRM2 promotes renal cell carcinoma progression and inhibits ferroptosis by interacting with ATF2. Exp Cell Res 2025; 447:114497. [PMID: 40057259 DOI: 10.1016/j.yexcr.2025.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The role of kringle-containing transmembrane protein 2 (KRM2) in renal cell carcinoma (RCC) remains unknown. This study aimed to explore KRM2's mechanistic role in regulating RCC progression. Tissue microarrays were used to map KRM2 expression in tumor tissues and analyze its relationship with RCC clinical features. Cell models were constructed by transfecting RCC cell lines with KRM2 knockdown, KRM2 overexpression, or ATF2 knockdown lentiviral vectors. Tumor xenografts were generated in nude mice to observe the effects of KRM2 on tumor formation. A gene expression microarray was used to identify the regulatory genes downstream of KRM2 and their binding relationships were verified by co-immunoprecipitation and cycloheximide pulse-chase assay. Through a series of in vitro experiments, effects of altering KRM2 and ATF2 expression on cell function and ferroptosis indicators were observed. Following these, we found that KRM2 expression significantly increased in RCC tumor tissues and was associated with tumor size, grade, stage, infiltration, and patient age. In vivo experiments confirmed that inhibition of KRM2 expression slowed the tumor growth. Silencing of KRM2 in RCC cells also significantly inhibited cell proliferation and migration and facilitated apoptosis and ferroptosis. ATF2 is predicted to be downstream of KRM2. Its expression is positively regulated by KRM2 and there was targeted binding between proteins. In vitro experiments further suggested that ATF2 knockdown reversed the cancer-promoting and ferroptosis-inhibiting effects of KRM2 in RCC. In conclusion, KRM2 plays an oncogenic role in RCC by promoting tumor progression and ferroptosis via regulation of its downstream target, ATF2.
Collapse
Affiliation(s)
- Fang Liu
- Department of Nephrology & Rheumatology and Immunology, Beijing Chao-Yang Hospital/Capital Medical University, Beijing, 100043, China
| | - Mengtong Wang
- Department of Urology, Beijing Chao-Yang Hospital/Capital Medical University, Beijing, 100043, China
| | - Gao Li
- Department of Urology, Beijing Chao-Yang Hospital/Capital Medical University, Beijing, 100043, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University, Guiyang, 550014, China; Guizhou Natural Products Research Center, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University, Guiyang, 550014, China; Guizhou Natural Products Research Center, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants Guizhou Medical University, Guiyang, 550014, China; Guizhou Natural Products Research Center, Guiyang, 550014, China.
| | - Xuhui Zhu
- Department of Urology, Beijing Chao-Yang Hospital/Capital Medical University, Beijing, 100043, China.
| |
Collapse
|
3
|
Ma Y, Lin H, Li Y, An Z. Amentoflavone Induces Ferroptosis to Alleviate Proliferation, Migration, Invasion and Inflammation in Rheumatoid Arthritis Fibroblast-like Synoviocytes by Inhibiting PIN1. Cell Biochem Biophys 2025; 83:1299-1312. [PMID: 39354278 DOI: 10.1007/s12013-024-01563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is prevalent worldwide and seriously threatens human health. RA-fibroblast-like synoviocytes (FLS) play important roles in almost all aspects of RA progression. This study aimed to study the effect of Amentoflavone (AMF), a polyphenol compound derived from extracts of Selaginella tamariscina, on the abnormal biological behaviors of RA-FLS. The immortalized human RA-FLS cell line (MH7A) was treated with AMF or transfected with small interfering RNAs (siRNAs) targeting peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1). Then, cell viability was detected by CCK-8 assay. EDU staining, wound healing and transwell assays were employed to measure the capacities of MH7A cell proliferation, migration and invasion. The levels of inflammatory factors were assessed using ELISA kits. Additionally, ferroptosis was analyzed by detecting Fe2+ content, lipid reactive oxygen species (ROS) level and expression of ferroptosis-related proteins. Pull-down assay was employed to verify the targeted binding of AMF to PIN1. Further, PIN1 overexpression or ferroptosis inhibitor Ferrostatin-1 (Fer-1) addition was conducted to elucidate the regulatory mechanism of AMF on PIN1 and ferroptosis. Results revealed that AMF intervention or PIN1 knockdown inhibited the proliferation, migration, invasion and inflammation in MH7A cells. AMF facilitated lipid peroxidation and ferroptosis in MH7A cells. Moreover, AMF targeted inhibition of PIN1 expression, and PIN1 overexpression restored the promoting effect of AMF on lipid peroxidation and ferroptosis in MH7A cells. Besides, Fer-1 reversed the impacts of AMF on the abnormal biological behaviors of MH7A cells. In summary, AMF induced ferroptosis to inhibit the proliferation, migration, invasion and inflammation in RA-FLS by inhibiting PIN1, providing a promising candidate for RA treatment.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, People's Republic of China
| | - Hongjun Lin
- Henan Institute for Drug and Medical Device Inspection, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Zhuoling An
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, People's Republic of China
| |
Collapse
|
4
|
Cai J, Tan X, Hu Q, Pan H, Zhao M, Guo C, Zeng J, Ma X, Zhao Y. Flavonoids and Gastric Cancer Therapy: From Signaling Pathway to Therapeutic Significance. Drug Des Devel Ther 2024; 18:3233-3253. [PMID: 39081701 PMCID: PMC11287762 DOI: 10.2147/dddt.s466470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gastric cancer (GC) is a prevalent gastrointestinal tumor characterized by high mortality and recurrence rates. Current treatments often have limitations, prompting researchers to explore novel anti-tumor substances and develop new drugs. Flavonoids, natural compounds with diverse biological activities, are gaining increasing attention in this regard. We searched from PubMed, Web of Science, SpringerLink and other databases to find the relevant literature in the last two decades. Using "gastric cancer", "stomach cancers", "flavonoid", "bioflavonoid", "2-Phenyl-Chromene" as keywords, were searched, then analyzed and summarized the mechanism of flavonoids in the treatment of GC. It was revealed that the anti-tumor mechanism of flavonoids involves inhibiting tumor growth, proliferation, invasion, and metastasis, as well as inducing cell death through various processes such as apoptosis, autophagy, ferroptosis, and pyroptosis. Additionally, combining flavonoids with other chemotherapeutic agents like 5-FU and platinum compounds can potentially reduce chemoresistance. Flavonoids have also demonstrated enhanced biological activity when used in combination with other natural products. Consequently, this review proposes innovative perspectives for the development of flavonoids as new anti-GC agents.
Collapse
Affiliation(s)
- Jiaying Cai
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Cui Guo
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Chuang YT, Yen CY, Chien TM, Chang FR, Tsai YH, Wu KC, Tang JY, Chang HW. Ferroptosis-Regulated Natural Products and miRNAs and Their Potential Targeting to Ferroptosis and Exosome Biogenesis. Int J Mol Sci 2024; 25:6083. [PMID: 38892270 PMCID: PMC11173094 DOI: 10.3390/ijms25116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis, which comprises iron-dependent cell death, is crucial in cancer and non-cancer treatments. Exosomes, the extracellular vesicles, may deliver biomolecules to regulate disease progression. The interplay between ferroptosis and exosomes may modulate cancer development but is rarely investigated in natural product treatments and their modulating miRNAs. This review focuses on the ferroptosis-modulating effects of natural products and miRNAs concerning their participation in ferroptosis and exosome biogenesis (secretion and assembly)-related targets in cancer and non-cancer cells. Natural products and miRNAs with ferroptosis-modulating effects were retrieved and organized. Next, a literature search established the connection of a panel of ferroptosis-modulating genes to these ferroptosis-associated natural products. Moreover, ferroptosis-associated miRNAs were inputted into the miRNA database (miRDB) to bioinformatically search the potential targets for the modulation of ferroptosis and exosome biogenesis. Finally, the literature search provided a connection between ferroptosis-modulating miRNAs and natural products. Consequently, the connections from ferroptosis-miRNA-exosome biogenesis to natural product-based anticancer treatments are well-organized. This review sheds light on the research directions for integrating miRNAs and exosome biogenesis into the ferroptosis-modulating therapeutic effects of natural products on cancer and non-cancer diseases.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan;
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung 900391, Taiwan;
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Guan X, Wang Y, Yu W, Wei Y, Lu Y, Dai E, Dong X, Zhao B, Hu C, Yuan L, Luan X, Miao K, Chen B, Cheng X, Zhang W, Qin J. Blocking Ubiquitin-Specific Protease 7 Induces Ferroptosis in Gastric Cancer via Targeting Stearoyl-CoA Desaturase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307899. [PMID: 38460164 PMCID: PMC11095140 DOI: 10.1002/advs.202307899] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Indexed: 03/11/2024]
Abstract
Gastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies. However, the mechanistic role of USP7 has not been fully elucidated, and currently, no USP7 inhibitors have been approved for clinical use. In this study, DHPO is identified as a potent USP7 inhibitor for GC treatment through in silico screening. DHPO demonstrates significant anti-tumor activity in vitro, inhibiting cell viability and clonogenic ability, and preventing tumor migration and invasion. In vivo studies using orthotopic gastric tumor mouse models validate DHPO's efficacy in suppressing tumor growth and metastasis without significant toxicity. Mechanistically, DHPO inhibition triggers ferroptosis, evidenced by mitochondrial alterations, lipid Reactive Oxygen Species (ROS), Malondialdehyde (MDA) accumulation, and iron overload. Further investigations unveil USP7's regulation of Stearoyl-CoA Desaturase (SCD) through deubiquitination, linking USP7 inhibition to SCD degradation and ferroptosis induction. Overall, this study identifies USP7 as a key player in ferroptosis of GC, elucidates DHPO's inhibitory mechanisms, and highlights its potential for GC treatment by inducing ferroptosis through SCD regulation.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Yichao Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhouZhejiang310014China
| | - Wenkai Yu
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Yong Wei
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Lu
- Hangzhou Institute of Innovative MedicineInstitute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Enyu Dai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexas77030USA
| | - Xiaowu Dong
- Hangzhou Institute of Innovative MedicineInstitute of Drug Discovery and DesignCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Bing Zhao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Can Hu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Li Yuan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Kai Miao
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Bonan Chen
- Department of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong Kong999077China
| | - Xiang‐Dong Cheng
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghai201203China
- School of PharmacyNaval Medical UniversityShanghai200433China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsInstitute of Medicinal Plant DevelopmentChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100193China
| | - Jiang‐Jiang Qin
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Key Laboratory of PreventionDiagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang ProvinceHangzhouZhejiang310022China
| |
Collapse
|
7
|
Zhang Y, Xie J. Induction of ferroptosis by natural phenols: A promising strategy for cancer therapy. Phytother Res 2024; 38:2041-2076. [PMID: 38391022 DOI: 10.1002/ptr.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
In recent years, heightened interest surrounds the exploration of natural phenols as potential agents for cancer therapy, specifically by inducing ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. This review delves into the roles of key natural phenols, flavonoids, phenolic acids, curcumin, and stilbenes, in modulating ferroptosis and their underlying mechanisms. Emphasizing the significance of amino acid, lipid, and iron metabolism, the study elucidates the diverse pathways through which these phenols regulate ferroptosis. Notably, curcumin, a well-known polyphenol, exhibits multifaceted interactions with cellular components involved in ferroptosis regulation, providing a distinctive therapeutic avenue. Stilbenes, another phenolic class, demonstrate promising potential in influencing lipid metabolism and iron-dependent processes, contributing to ferroptotic cell death. Understanding the intricate interplay between these natural phenols and ferroptosis not only illuminates complex cellular regulatory networks but also unveils potential avenues for novel cancer therapies. Exploring these compounds as inducers of ferroptosis presents a promising strategy for targeted cancer treatment, capitalizing on the delicate balance between cellular metabolism and regulated cell death mechanisms. This article synthesizes current knowledge, aiming to stimulate further research into the therapeutic potential of natural phenols in the context of ferroptosis-mediated cancer therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|